Simulation of Anisotropic Crystal Etching

Bill Foote
Master’'s Project Report
Under Direction of
Professor Carlo H. Séquin

Computer Science Division
Department of EECS
University of California
Berkeley, CA 94720
September 12, 1990

ABSTRACT

A series of programs have been developed to model anisotropic etching of crystalline
substances. The focus of this work was on the computation of the geometric offset surfaces
for a given object, when the etching of different faces progresses at different rates depending
of face orientation. Programs have been developed to calculate the emerging shapes for both
two- and three-dimensional geometries.

Since complete information about the anisotropic etch rates in all possible directions
have been published for only very few combinations of crystals and etch solutions, we also
had to write a rudimentary generator that would produce plausible and self-consistent
direction-dependent etch rate functions. This modeling proceeds in stages: From the
geometry of the crystal lattice, its atom spacings and angles between bonds, some inferences
are made about the probability that certain more or less exposed atoms get attacked and
removed by the etchant. With this model the etch rates for several key directions, i.e., for the
simple crystallographic planes (100), (110), (210), (111), (211), and (221), have been calcu-
lated. The etch rates for the direction in between these key orientations are found by interpo-
lation.

The etching simulator then uses such an artificially generated function or any function
that may come from experimental observations and applies it to arbitrary polyhedral shapes.
For all edges and vertices it first determines what new bevel faces might form because of
strong local maxima and minima in the etch rate function. Then all the faces, the original
ones as well as the bevel faces, are advanced at their corresponding etch rates and combined
into a mew consistent surface description of a solid object. The user can specify the total
etching time and the number of intermediate states that should be displayed. The shapes
obtained from the etching simulator programs are in good qualitative agreement with the
kinds of shapes actually observed in the laboratory.

This work was supported in part by the Central Research Labs of Siemens Corp.

TABLE OF CONTENTS

..

2D Etching Simulator Implementation/RESUILSccoeveeveveerrreeereeeeeeeeeeoeoeoeo s

3D Etching Rate MOELc.cooveruiiiueieicreceieecececeeeeeeeeeee e eeee e

3D Etching Simulator IMplementationo..oevceevieeeemeeeeeeeeeseesesees oo,

3D Etching Simulator RESULLSoveveveeveieeeeeeeeeeeeeees oo

..

18

25

31

42

60

64

75

76

CHAPTER 1

INTRODUCTION

In this paper, we describe a system that we have implemented to model the etching of a
general shape from a crystalline substance such as silicon. The analysis is divided into three
parts: a model of the rate at which faces of various orientations etch, a model of what faces
appear at a corner, and a system that applies the ‘‘etching model’’ generated by the previous
two modules to an arbitrary shape. This analysis is carried out first in two dimensions, then
in three.

The etching rate of a substance can be described with a polar diagram. It is difficult, in
general, to find complete data on the etching rate of a given substance, such as silicon, being
etched with a given etchant. [Seidel, *82] Usually, all that is available are the etching rates for
a handful of etching directions. We are interested, however, in studying a variety of situa-
tions, and require therefore, an automatic generator of reasonable etch rate polar diagrams.

The other part of this analysis concems an etching simulator. This is a system that
accepts a representation of an etching rate polar diagram and simulates the action of an
etchant described by that diagram on an arbitrary shape. The polar diagram may be one
created with the model developed in this paper or it may be one that comes from any other
source.

This paper is divided into two main sections: a two dimensional analysis, and a three
dimensional analysis. The 2D analysis allows many of the issues involved to be explored in a
framework that is much easier to understand. The ideas developed in 2D are then applied and
extended to the 3D case in the second part of the paper. Each section is divided into four
main parts: A derivation of an etching rate model, an analysis of how the geometry in the
neighborhood of a comer changes under etching, an etching simulator program, and results
obtained with the simulator.

The first section in both 2D and 3D is a derivation of an etching rate model. This
analysis allows us to generate plausible polar diagrams of the etching rate, and gives us
insight into the etching process.

The next section consists of an analysis of how the local geometry of a shape changes
comer under etching. This analysis centers around what happens at a comer of a shape being
etched. Experimental data suggests that new faces can develop at the comers of objects being
etched. A model of this process is developed in this section. As will be seen, this analysis
depends strongly on assumptions made in the preceeding section.

The ideas developed in the preceeding two sections are applied to a working computer
simulation of the etching process in the third section. This section explores some of the
implementation decisions that were made in the creation of this simulation.

Notes on notation

Throughout this paper, the notation ¥ is used to denote a vector. A hat is used to denote
a unit vector, thus v denotes a unit vector in the direction of ¥. Leaving the vector symbol

-

off a vector name denotes the magnitude of a vector, thus | ¥l =v.

Chapter 1 Anisotropic Crystal Etching

CHAPTER 2

2D ETCHING RATE MODEL

To know how a shape changes when it is etched, one needs to know how fast material is
removed along faces of different orientations. We are interested in creating a system that can
handle strongly anisotropic etchings; for example, with Silicon different planes exhibit a
difference in etch rate of over 100:1 with certain special anisotropic etching solutions. As
mentioned earlier, it is difficult to find complete polar diagrams of the etch rate for any
material. We wanted a generator that would produce a wide variety of reasonable and at least
consistent diagrams. An ad hoc model of the etching process was therefore assumed, and that
model was applied to a very simple model of a crystal lattice. This allowed the derivation of
etch rate diagrams that are at least free of internal contradictions. These etch rate functions
also lead to the typical shapes found in the reports of experimental work.

a
?—O _________________ b
-0 0 0 0 6--e -~
i { d
a ©--
v
: " i
]

Figure 2.1. This shows the different types of bonds that occur in a crystal. “‘a’” bonds are
found along a flat face, and are the easiest to break. ‘‘b’’ bonds are somewhat protected,
and ‘‘c’’ bonds are slightly more protected for a biclinic lattice (Jike thg one illustrated).
“‘d”’ bonds are the most internal and thus protected. The vectors {; and [, specify the dis-
tance between atoms horizontally and vertically. Of course, for each bond type there are
corresponding vertical and horizontal bonds; there are eight different bond strengths in all
(@y,by,Cy,dy,an,bn,cr,and dp) A ‘‘bond strength”’ is represented as the probability of
a given bond breaking per unit time.

‘r..

The derivation of an etch rate diagram is divided into two parts: the determination of
the etch rate at several key face orientations, and the determination of the etch rate at an arbi-
trary orientation by interpolation. Only crystals with one ‘‘atom’’ (or other basic unit of
matter) per unit cell were considered. Effects of the etchant working on a substance, such as
surface heating, convection, or non-uniform distribution of the etchant were ignored in this
analysis. Biclinic lattices (lattices in which the axes are not orthogonal) are allowed. Nota-
tionally, the unit cell of the 2D crystal lattlce is described with two vectors l;, and 1 (for hor-
izontal and vertical). To simplify analysis, 1, is constrained to lie along the positive x axis,
and 7, is constrained to either lie along the positive y axis or be within the first quadrant.

The probability of an atom being etched away during one time step is modeled as the
product of the probabilities of its bonds breaking. For each atom, only the existing bonds to
its four nearest neighbor locations are considered. Bonds at an internal comer or within the
crystal are more protected from attacks by the etchant and are thus expected to have a lower
probability of breaking. 8 different bond types are distinguished. These bonds are illustrated
in figure 2.1.

1. Face Characterization

A face is generally characterized by its Miller indices (i,j). For example, figure 2.2 is
an illustration of the (4,1) face. Counting atoms, i is the number of atoms vertical displace-
ment per j atoms horizontally, i.e. in figure 2.2, each step of 1 atom horizontally results in a
step of 4 vertically. Another way to view the _l}mler indices of a face is by considering where
a face intersects the unit cell basis vectors {, and 1,. For any face, the intercepts can be

o 0000
L 00 0 o0
"“‘/""a,‘_oooc
0 0 0 0O

0 0 0 O

O 0 O

Figure 2.2. This figure shows the (4,1) face, and shows the unit cell basis vectors 7; and l_)

It can be seen that the face intersects the basis axes at T;, and at 4[Scaling by ‘11 , the inter-
-
cepts can be seen to be at %— and —lh— the Miller indices are thus (4,1).

Chapter 2 Anisotropic Crystal Etching

- -3
v

l l - . ot e
scaled such that they occur at —:'— and T It is interesting to note that the Miller indices can

be thought of as a scalar multiple of the components of the normal vector to a face in the
coordinate system defined by the (possibly non-orthogonal) basis vectors I, and /,. In the
case where the lattice is square, the Miller indices are thus equal to the components of a vec-
tor normal to the face, pointing into the crystal. (In computer graphics, normals are usually
thought of as pointing out of an object. In this paper, the computer graphics convention is
adopted; the Miller indices are thus the opposite of the components of the vector normal ofa
face.)

In crystallography, the Miller indices are generally scaled so that they are both integers.
For our purposes, it is more convenient to scale them such that one of them is exactly 1 and
the other is either O or a number with magnitude greater than or equal to 1. Thus, a horizontal
face is an instance of the (0,1) face.

Because biclinic crystals are considered, a face with both intercepts having the same
sign is different than a face where the intercepts have differing signs. In this paper, such
faces are denoted by letting the first Miller index i be negative. For example, figure 2.3 is an
illustration of the (-3, 1) face. Using our conventions, all faces can be written as (1,n) or
(n,1) (or (=1,n) or (-n, 1)) where ne[1,), except for the horizontal (0,1) face and the verti-
cal (1,0) face.

O O O O O
O O 0O O
O O 0O O
0 0 0 O

O
O

Figure 2.3. This figure shows the (3,-1) face.

Chapter 2 Anisotropic Crystal Etching

2. Etch Rates at Key Face Orientations

As the first step in deriving an etch rate curve from the eight bond strength parameters
discussed above, the etching rate for several ‘‘key’’ face orientations is first analyzed. Eight
such key orientations are analyzed: the orientations that are expected to correspond to local
minima on the etch rate curve (which are the (0,1), (1,1), (1,0), and (-1,1) faces), and the
orientations that are expected to correspond to local maxima (which are the (1,2), (2,1),
(-2,1), and (-1, 2) faces). In this analysis, only exposed surface atoms are considered. The
assumption is made that the probability that an atom gets removed is the combination of the
probabilities that all the bonds that hold it in place get removed.

2.1. The (0,1) Face

First let us consider the (0,1) face, pictured in figure 2.4. Initially, each atom is held in
by three bonds: two a, bonds and a d, bond. From the assumptions presented earllier, we
conclude that the probability of an atom being etched away from a flawless surface per unit
time is a, 2d, .

Once a surface atom is etched away, its two neighboring atoms are much more exposed;
one would therefore expect them to etch away much more quickly. This process can be
thought of as a surface atom being initially ‘‘attacked’’, and once it is gone, a layer of atoms
being stripped off relatively quickly. A snapshot of the process of stripping away a layer is
shown in figure 2.5. The probability of the left comer atom being etched away is a, b, , and
the probability of the right comer atom being etched away is gj ¢y .

While a layer is being stripped away, other surface atoms are being attacked. To
analyze this process, let us denote the probability of a surface atom being attacked as €, and
the two comer atom probabilities as o; and oy, that is, € = a,%d,, o = a by, and 0y = g, ¢, .

Assume that there are simultaneous attacks every D atoms apart. It would take 7 =

O O O0O00000
O O OO00O0
O O O O00O0

D
o + 0y

O
O

Figure 2.4. This figure shows the (0,1) face, and the bonds relevant to the removal of a sur-
face atom.

Chapter 2 Anisotropic Crystal Etching

Figure 2.5. This figure shows the (0,1) face shortly after a surface atom has been removed.
Note that this has caused two comer atoms to be exposed.

time units to remove one layer. Over D atoms, we expect an exposed atom to be attacked

every T = Fle_ time units. We equate Ty and T, to find D :

1 __ D
De o) + 0y

oy +
D:'\/_l_%
3

The effective rate of material removal r (in atom layers per second) is:

=7.1—2=De=\/e(a1+a2)

_ 1
"—TT

Chapter 2 Anisotropic Crystal Etching

OO 0O0000O0
OO O0O00O0O0
OO0OO0OO0OO00O0
ONORONONONONO.
OO O0OO0O0O0O0
0.0.0.0.0.0. 0.

-l-: ; /%’ Iﬁo_l
h

Figure 2.6. This figure shows the (0,1) face of a biclinic crystal. Vo,1 is the unit vector in the
direction in which the edge is moving—it is perpendicular to the face. 7 is the product of
the atom layer removal rate r with /, .

O
O
®

2]
<

iy

e
00
D OO0

;?Q:(‘:
O 00O
DOO0OO0OO0O0

—~
NJ
b
:Q:
QC

2]
<

%

<

OO 000000

Figure 2.7. This figure shows the (1,1) face of a crystal, shortly after the surface has been at-
tacked.

Chapter 2 Anisotropic Crystal Etching

The time to remove one layer of atoms can conveniently be converted to a velocity vec-
tor, denoted by ¥ o. Referring to figure 2 6, the removal of one layer of atoms can be
thought of as shifting the face by the vector L. Projecting this vector onto the unit vector in
the direction of etching v and multiplying by r results in the rate of etching in the (0,1)
direction v =P - Vo,1. Summarizing and collecting terms, this becomes

“ -
Vo,1=VYo,1- lv \l(ahbv + ap Cv) ahzdv

2.2. The (1,0) Face

The (1,0) face follows the same analysis as above. The final expression for the etch rate
is:

" -
vipo=V10 I ‘j(av by +a,ch) aldy

2.3. The (1,1) Face

Figure 2.7 shows the (1,1) face. The situation here is analogous to that of the (0,1) face:
there are relatively protected *‘surface’’ atoms which are attacked, and when one is removed
there are two more exposed ‘‘comer’’ atoms. The rate of removal of one layer of atoms r can
be obtained from the same formula » =V(a,; + 0) €, where in this case the probability of a
surface atom attack € =c,c,, and the probabilities of the two comer atoms are given by
oy =a,c, and Q2 =apCy. The removal of one layer of atoms may be viewed as shifting the
face by I/, (or by T, —either formulation will derive the same result). Projecting onto the unit
vector in the direction of etching ¥ ; and combining terms as before, this becomes

~ -
vii=V11- b V@ycr +ancy) cycn

2.4. The (-1,1) Face

The (-1,1) face has an analysis very similar to that of the (1,1) face, except that the
corner bonds are the more exposed ‘‘b’’ bonds instead of being ‘‘c’’ bonds. For the (-1,1)
face, € = b, by, 04 = ay b, and o = a, b,. This results in a face veloc1ty of

Vo1 =vor1 Gl V@, by +anb,) byby

2.5. The (2,1) Face

The (2,1) face, pictured in figure 2.8, is very different from any of the faces analyzed so
far. Here, there are a large number of very exposed corner atoms (pictured as double circles).
Each such corner atom has a relatively high probability of being etched away of a,c,. When
one of these atoms is etched away, the.immediate neighborhood consists of more profected
atoms. For this reason, the disappearance of one atom does not cause a layer of atoms to be
stripped away. Rather, each corner atom can be considered to be removed independently.

Chapter 2 Anisotropic Crystal Etching

10

'©:0 O O OO0
L0 00 00
Q40 O OO
L0 0 00

O O O

i _AQO00
. 540 O

I

Figure 2.8. This figure shows the (2,1) face of a crystal, as well as the bonds that are con-
sidered in the derivation of the etch rate. Only the corner atoms (those represented as double
circles) are considered in the analysis. V is the unit vector in the direction of etching.

In this model, it is assumed that the comer atoms are etched away at a uniform rate.
Each time step T, one ‘‘layer’’ of comer atoms is etched away. The length of a time step is

given by T = . This etching results in the same atomic structure, displaced by T,. As

Ay Ch
before, this displacement can be projected onto the unit normal in the direction of etching v
and multiplied by the rate of removal of one layer. This done, the etch rate in the (2,1) direc-
tion becomes

a x4
ra1=aycpf21 by

2.6. The (1,2), (-1,2) and (-2,1) Faces

The (1,2), (-1,2) and (-2,1) faces have analyses very similar to that of the €2,1) face.
The resulting etch rates are listed below:

- -
riz=apcyfi12
- -
raz2=apb,F12 (=ly)

a -
roi1=aybyf o1l

Chapter 2 Anisotropic Crystal Etching

11

2.7. Results/Discussion

With the plausible assumptions that a, >b,2c, >d, and a, >b, 2c, >d, and with reason-
able choices for the bond breaking probabilities (i.e. a,>>by), the (1,0), (1,1), (0,1) and
(-1,1) faces will etch relatively slowly, whereas the (2,1) and (1,2) type faces will etch rela-
tively quickly. This is to be expected, since the etching process is controlled by well-
protected atoms in the first case, and by relatively unprotected comer atoms in the second.
‘This is illustrated in Figure 2.9, which shows the etch rates for the 16 key faces.

The 16 points for which the etch rates have been determined correspond to the expected
extrema of the etch rate curve according to the model. This model has two kinds of etching
processes. At the (2,1), (1,2) and similar faces the etching is controlled by fast corner atoms.
These faces correspond to maxima on the etch rate curve, because it is on these faces that
there is the highest concentration of comer atoms. At the (1,0), (1,1) and similar faces there
is a slower process where a surface atom must first be attacked. After one atom is attacked
two comer atoms are exposed that etch at a faster rate, leading to a layer-by-layer stripping of
the surface. These faces correspond to the minima of the etch rate curve.

It is interesting to note that perfectly isotropic etcing can be approximated. If a square
lattice is assumed (i.e. l,, =<1,0> and l = <0,1>), for symmetry considerations one can set:

(12 | (1.2)

------------------- @1

2.1 NN

LY (20

(1.2) | (-1.2)

Figure 2.9. This figure shows the etch rates of the key faces for some typical lattice parame-
ters. The etch rates have been connected by straight lines. The actual lattice parameters
used were /, = <1,0>, l =<03,1>, a, =a, =02, b, =b, =0.01, ¢, =c, =0.008,
and dy =d, =0.0001. The resulting rates were ryg=1.15-10"4, r;;=7.84-107%,
r11—371 10—4 ri2= 8.11 10—4 701—12010_4 ro12= 797 10"4 r_11—386 10"4
andr_21—781 10_4

Chapter 2 Anisotropic Crystal Etching

12

an =ay, b, =b, =cp =c,, and d, =d,. This leaves three unknowns: a, b and d. Setting the
key etch velocities equal, two equations are obtained: rjg=r;, and rip=ry; (equations
involving the other key rates are equivalent to the two just given). Now one can solve these
equations fora and d in terms of b :

rio= 42a3bd
ria= ab3
roy= V5 ab
Vgpi= ¥5ab
242
3_ab
b’==3
a=5b

V2a3bd =Vab3

d= abd3 _ b? _ 1
2a% 247 50
It is rather surprising that the value of d is independent of the values of @ and . This is due
to the fact that the probability of removal of a surface atom on the (1,0) face is modeled as
the product of the probabilities of three bonds breaking, whereas the other atoms are modeled
as the product of the probabilities of two bonds breaking. If all bond probabilities were
scaled up uniformly there would be a relative increase in the etch rate of the (1,0) face.
Finally, it must be noted that these equations set the key etch rates equal, but do not neces-
sarily minimize the etch rate deviations for the orientations in between them.

3. Interpolation Between Key Face Orientations

To drive an etching simulation one needs to have the etch rate curve defined at every
point, not just at a few key face orientations. Of course, one could simply do linear interpola-
tion (in polar coordinates) between the key points—in effect, connecting the known points
on the graph with arcs. For this project, however, a more detailed analysis at what happens at
other face orientations was required. In this section the etching process at orientations
between key orientations is studied.

3.1. Orientations Between (1,0) and (2,1)

Faces at orientations between (1,0) and (2,1) can be represented by Miller indices (#,1)
where n e (2,00). A typical example, pictured in figure 2.10, is the (4,1) face. From the figure,
one can see that there are fast comer atoms, with the same bond pattern.as was seen.on the
(2,1) face, as well as atoms with the same bond patterns as was seen on the (1,0) face (these
atoms are pictured as triple and double circles, respectively). There is also one other surface
atom (with an acd bond pattern), but since this atom was ignored on the (2,1) face, it will
also be ignored here.

Chapter 2 Anisotropic Crystal Etching

13

O o0 O O O O
O O O O O O

O O

Figure 2.10. This figure shows the (4,1) face, and the vectors W and W that represent con-
tributions to the etch rate. V4 is the unit vector in the direction of etching. Triple circles
represent quickly etching ‘‘corner’’ atoms, and double circles slow ‘‘surface’” atoms.

The etching of a surface such as this is inherently a probabilistic process, and is difficult
to analyze, especially considering that this would have to be done for a whole family of faces.
Given some of the other simplifying assumptions that have already been used in this model, it
does not seem that such an analysis is justified. Instead, a further assumption is made: the
contribution to the etch rates from the (2,1)-like comer atoms and from the (1,0)-like surface
atoms can be computed separately and summed. This neglects the fact that in the analysis of
the (1,0) face a relatively long surface over which to operate was assumed. We believe that
this effect is negligable, especially when compared to some of the other simplifying assump-
tions made in this model.

The first contribution analyzed is that of the comer atoms. As on the (2,1) face, the
etching away of a comer atom can be thought of as displacing the edge by one atom verti-
cally. The velocity vector w that represents the speed at which the edge moves in the verti-
cal direction can be calculated. To determine the rate at which the edge actually moves, this
vector is projected onto the unit normal in the direction of etching v4,1. An expression for Wi
can be obtained by noting that r,; =wh - v,;. Generalizing for the (n,1) face for any
ne (2,0, an expression for the contribution to 7, ; from comer atoms is

Chapter 2 Anisotropic Crystal Etching

14

r2,1 -
Tn 1,corner = lv'vn,l

N ‘?2 1
Note that as n approaches infinity (i.e. as the orientation of the face approaches the (1,0)
orientation) 7, 1 corner approaches 0, because 1 and v, o are orthogonal. As n approaches 2,
this expression yields exactly ry .

For the (1,0)-like surface atoms, more of an approximation must be made. The assump-
tion is made that each surface atoms adds a contribution to the velocity of W, =7 g, which is
projected onto V4. To find the net contribution of such atoms over the entire surface, this
contribution is scaled by the proportion of atoms that have the (1,0) bond pattern. In Figure
2.10, one can see that half of the atoms are like this. In general, the proportion of (1,0) like

”;2 . The contribution from (1,0)-like surface atoms is thus

atoms will be

_n-2 PO
rn,l,xurface = ri1o0v1,0Va,1

Note that as n approaches infinity, this expression approaches r and as n approaches 2, it
approaches 0.
Summing the surface and comer contributions, this becomes

-

1 \$ 1+n—2

Tn1 = r10v1,0Va 1
l V2 1

for any ne (2,0).

3.2. Orientations Between (2,1) and (1,1)

Faces at orientations between (2,1) and (1,1) can be represented by Miller indices (n,1)
where ne(1,2). A typical example, pictured in Figure 2.11, is the (1.5,1) face. As was the
case in the previous analysis, there are fast (2,1)-like comer atoms, as well as slow surface
atoms, this time with bond patterns like those seen on the (1,1) face.

Again examing the contribution from the comer atoms first, the removal of the comer
atoms is viewed asa _gxsplacement along the (1,1) direction by one atom. In this case, that’s a
displacement of 5,-I,. In figure 2.11, W represents the velocity in that direction due to the
removal of comer atoms. W, can be derived from r,; with a formula similar to that of the
previous section. The resulting contribution to 7, ; from the etching of corner atoms is

T'n 1 corner = ‘r—'—(lh—l)V,, 1
ULy va
where ne[1,2].

At the slow (1,1)-like surface atoms, the same approximation is made as before. There
is one slight complication, though: the Miller index n does not directly tell us the proportion
of surface atoms. To calculate this, the ‘‘cell size’” m is considered. m represents the aver-
age height of the cell between two comer atoms. In figure 2.11 the cell size is 3. A general

expression for the cell size is nll +1. The proportion of surface atoms is m—2 ,or

1
m=2 _ 7T %2 _ 2

m 1 n

n-1

Chapter 2 Anisotropic Crystal Etching

15

OO 0O00O0O0

Figure 2.11. This figure shows the (1.5,1) face, and the vectors #; and W', that represent
contributions to the etch rate. vy 51 is the unit vector in the direction of etching. Triple cir-
cles represent fast ‘‘corner’’ atoms, and double circles slower ‘“‘surface’’ atoms.

Using this, the contribution to r, ; from surface (1,1)-like atoms is

2-n P
Tn \surface = “n riiviive,l

Summing the surface and comer contributions, this becomes

ra1 7 PN 2—n PO
rp1=——-"—(p=l)Va 1+ = VLV

1) v
for any ne(1,2). Note that at the boundaries of this interval, this equation yields ryjand ro;
as appropriate.

3.3. Other Orientations

The analysis between other pairs of key face orientations is similar to the two above
analyses. The corresponding expressions can be derived by proper substitution of the vari-
ables.

Chapter 2 Anisotropic Crystal Etching

16

4. Results/Discussion

Based on the above analyses, two programs called etchkey and etchinter have been
developed. Together, they calculate a complete etch rate diagram. etchkey accepts bond
strength parameters, and derives the etch rate for the key face orientations. etchinter interpo-
lates between these etch rates to form the complete etch rate diagram. The result of applying
these programs to some typical bond strength parameters is shown in figure 2.12.

The interpolation program actually produces a list of points along the etch rate curve.
Within the actual etching program (discussed later in this paper) a linear polar-coordinate
interpolation is done between adjacent points. To produce a plot, the arcs produced by this
linear interpolation are approximated with straight lines. In figure 2.12, there are four inter-
polated rate points between adjacent key directions (i.e. each pair of key rates is connected by
five arcs). Each arc is approximated by eight straight lines.

An interesting etch rate diagram is shown in figure 2.13. This is the diagram derived
from the isotropic etching approximation developed earlier. This is not the closest approxi-
mation to perfectly isotropic etching that is possible with our model; some kind of least-
squares analysis would probably result in a curve that is slightly closer to a perfect circle.

In our implementation the calculation of the key etch rates and the interpolation

between these rates has been carefully decoupled. Because of this decoupling, if one has
access to etch rates for the key faces that were measured experimentally or derived through a

Figure 2.12. This figure shows the complete etch rate diagram for some typical lattice
parameters. The actual lattice parameters used were [, =<1,0>, [, = <0.3,1>,
ap =a, =0.2,b, =b, =0.01,¢c, =c, =0.008,and d;, =d, =0.0001.

Chapter 2 Anisotropic Crystal Etching

17

Figure 2.13. This figure shows the etch rate diagram that results when we approximate per-
fectly isotropic etching by setting the key etch rates equal.

different theory, one can still use the interpolation module developed above.

The model developed above is very simplistic, and contains several approximations.
The simple model of bonds that break in a probabilistic manner is probably a poor approxi-
mation to the actual mechanisms in any real etching process. We believe, however, that the
above analysis is good enough to give reasonable and self-consistent etch rate diagrams for
the purpose of simulating the etching process.

Chapter 2 Anisotropic Crystal Etching

CHAPTER 3

2D Local Geometry Analysis

In this chapter it is assumed that the etch rate for any planar crystal face of arbitrary
orientation is known, either from expermentally determined data or from the analysis in
Chapter 2. Thus, when etching a shape, faces can simply be advanced at the corresponding
etch rate. It has been demonstrated experimentally, however, that faces of different orienta-
tions that were not present previously can develop at the comners of an object being etched. It
is the goal of this chapter to model how that occurs, and develop algorithms that determine
exactly what faces have a chance to appear, given a particular starting geometry and etch rate
function.

i
V10

Figure 3.1. This figure shows a face at the quickly etching (2,1) orientation between two
more slowly etching faces. The dotted line represents the shape that results after etching for
a short period of time. The lencth of the (2,1) face increases at the expense of the other
faces over time.

18

19

1. Candidate Faces

At a comer one can imagine that there are an infinite number of microfaces with orien-
tations distributed between the two orientations of the incident faces. Experience, however,
shows that at a corner only a few select face orientations will form (in addition to the pre-
existing faces). The set of faces that might develop at a corner is called the set of “‘candidate
faces.”

At a convex comer, one would expect faces that etch away faster to dominate. Refer-
ring to figure 3.1, the (2,1) face etches much more quickly than the surrounding (1,0) and
(1,1) faces. This causes its length to increase at the expense of the surrounding faces. If all
zero-length microfaces at a corner are considered, one would expect the microfaces with
orientations at the maxima of the etch rate curve to increase in length over time. By a similar
argument, at a concave comer one would expect the microfaces with orientations at the
minima of the etch rate curve to dominate. But is it sufficient to simply consider the extrema?
It turns out that in general it is not, although in most cases considering only the extrema is a
very close approximation.

To predict at which orientations a microedge will grow to finite size, Frank’s two
theorems on crystal dissolution are useful. [Frank, '58] The first theorem states that if the
rate of etching of a crystal surface at any given time is a function only of orientation, then
during etching, the locus of an elemental area of crystal surface with a particular orientation
is a straight line. The second theorem states that if the etching velocity is defined as meas-
ured normal to the actual crystal surface (as we have done), and the polar diagram of the
reciprocal of the etching velocity as a function of orientation is constructed, then the trajec-
tory of an elemental area of crystal surface of given orientation is parallel to the normal to the
polar diagram at the corresponding orientation. [Barber, *73] A polar diagram of the recipro-
cal of the etching velocity is called a ‘‘slowness curve’’.

Figure 3.2. This figure shows an example of a portion of a slowness curve, along with nor-
mal vectors to the curve.

Chapter 3 Anisotropic Crystal Etching

20

Figure 3.3. This figure shows an example of a crystal, and shows the result of etching that
crystal according to the slowness curve pictured in figure 3.2. P’Q’R’ is the contour of the
crystal after etching for a short time.

This result can tell us directly what orientations of microfaces will survive at a corner.
Consider the slowness curve shown in figure 3.2. Etching a crystal with edge PQR (figure
3.3) according to the slowness curve pictured in figure 3.2, the faces initially present are nor-
mal to OA and OB. Faces of orientation between these are potentially present at Q. Those
having normals between OC and OD have converging trajectories. Being together at the
start, they cannot spread apart. Faces normal to OC and OD have parallel trajectories; along
this line, therefore, we find both these faces, with a sharp edge between them. Outside OC
and OD we have diverging trajectories; on either side of the edge we therefore expect a
curved surface.

The above argument applies to a convex cormner; at a concave comer the diagram is the
same except that the normals to the slowness curve point outwards. The same criterion
applies: diverging normal vectors imply that faces of the corresponding orientation will
appear.

For our purposes, we are interested in determining which miroface orientations need to
be considered for addition at a corner, based on ‘‘competition’’ of the microface with faces of
nearby orientation. From Frank’s theorems, we conclude that at a convex comer, regions
where the slowness curve has concave curvature correspond to orientations of microfaces that
must be added; at a concave comer; regions where the slowness curve is convex correspond
to the orientations of microfaces that must be added. A region that is neither concave nor
convex (i.e. the slowness curve is a straight line) corresponds to orientations of microfaces
that don’t have to be added at either a concave or a convex comer.

Chapter 3 Anisotropic Crystal Etching

21

2. Application to our Etching Model

The slowness curve corresponding to the etch rate curve of figure 2.12 is shown if figure
3.4, At the maxima of the slowness curve (i.e. at slowly-etching orientations) outward-
pointing normals clearly diverge. This confirms that orientations corresponding to minima
on the etch rate curve will develop at concave comners. Similarly, at the minima of the slow-
ness curve (i.e. at quickly-etching orientations) inward-pointing normals diverge, confirming
that orientations corresponding to maxima on the etch rate curve will develop at convex
comers.

The non-extremal regions of the curve are very nearly straight lines. This means that
normals to the etch rate curve are nearly parallel. It tumns out that some of these regions are
slightly convex, while some are slightly concave. This means that some corners will become
slightly rounded during etching. The curvature is so slight, however, that this effect is not
noticeable. In other words, given our underlying etch rate model, the set of candidate faces at
a comner can be restricted to those orientations at the extrema of the etch rate curve with little
loss of accuracy.

An interesting limiting case to discuss is a perfectly isotropic etch rate diagram. In this
case, there are no dominant faces at a convex corner. No new faces develop at comers as the

Figure 3.4. This figure shows the slowness curve corresponding to the etch rate curve of
figure 2.12. Note that between extrema the curve closely approximates straight line seg-
ments.

Chapter 3 Anisotropic Crystal Etching

22

Figure 3.5. This figure shows what would be expected when a concave corner is subjected
to perfectly isotropic etching. The thin line represents the object boundary after etching for a
short period of time. Notice that the sharp corner becomes a curve.

etching process continues. At a concave comer, however, all orientations between the neigh-
boring faces appear. The result is that a comner develops into a semi-circular arc.

3. Dominant Faces

The above analysis provides the set of candidate faces at a given corner. Not all
members of this set, however, will necessarily appear in the object being etched. Whether a
particular face develops or not depends on the local geometry.

Consider the concave corner pictured in Figure 3.6. For face ¢ to grow the vertex velo-
city slowness vectors 3} . and 5% , must diverge. Recall that the slowness vector of a vertex
is the perpendicular to the chord joining the slowness vectors of the two adjacent faces. One
can thus see that 3, . and 5} 5 can only diverge if 5}, extends beyond the chord joining 5, and
5. In general, to determine which virtual faces will grow at a given corner, a polar diagram
of the slowness vectors of the two faces and all intermediate orientations can be considered.
If the convex hull around all of these points is formed, the vertices of the outside half of the
convex hull (i.e. the part of the convex hull that is further from the origin) correspond to
orientations of virtual faces that will grow (see Figure 3.7).

At a convex comer, the vertex velocity vectors must again diverge. This situation is
pictured in Figure 3.8. In this case, the slowness vector 5 must not project beyond the chord
joining 5, and 3}. This can be understood intuitively by recognizing that at convex corners,
fast etching faces (i.e. short slowness vectors) are favored. To compute which virtual faces
will grow at a convex comer, a polar diagram of the slowness vectors of the two faces and all
intermediate orientations can again be considered. The vertices of the inside half of a convex
hull constructed around these points (Figure 3.9) will correspond to orientations of virtual
faces that will grow.

Chapter 3 Anisotropic Crystal Etching

Figure 3.6. This shows a concave corner where the virtual face ¢ grows over time. ¢ will
only grow if its slowness vector 3% projects beyond the chord joining 3, and 5} .

Figure 3.7. This shows the slowness vectors of two faces a and b that form a concave
comer, and several intermediate slowness vectors. To determine which of these vectors
correspond to virtual faces that will grow over time, the convex hull around the endpoints of
all of the slowness vectors is formed. Every vertex on the outside half of the convex hull
corresponds to a virtual face that will grow over time.

Chapter 3 Anisotropic Crystal Etching

23

24

Figure 3.8. This shows a convex corner where the virtual face ¢ grows over time. ¢ will
only grow if its slowness vector 5, does not project beyond the chord joining 5, and 5}.

A
54
5
o

" Sh

Figure 3.9. This shows the slowness vectors of two faces @ and b that form a convex
corner, and several intermediate slowness vectors. To determine which faces will grow over
time, the convex hull around the endpoints of the slowness vectors is formed. Every vertex
on the inside half of the convex hull corresponds to a virtual face that will grow over time.

Chapter 3 Anisotropic Crystal Etching

CHAPTER 4

2D ETCHING SIMULATOR IMPLEMENTATION/RESULTS

The etching simulator was broken into four distinct modules, reflecting the logical divi-
sions in the analysis. This allows the use of only selected parts, if desired. Each functional
module shall be discussed in tum.

1. 2detch_rate

The ‘‘2detch_rate’’ program implements the model developed in Chapter 2. Supplied
with bond strength probabilities, it calculates
the etch rates at all key directions. It then interpolates between the key etch rates. This is
not simply a liner interpolation; interpolation is done according to the formulae developed in
the latter half of Chapter 2. The number of sample points is a user-specifiable parameter.

2. 2detch_faces

The ‘‘2detch_faces’’ program analyzes a curve to determine which regions of the slow-
ness curve have concave curvature, and which regions have convex curvature. This deter-
mines what orientations will be included in the set of candidate faces at a corner. As was
noted earlier, the slowness diagrams of the etch rate functions produced by 2detch_rate are
very nearly straight lines, so it is sufficient to only include the extrema of the etch rate func-
tion. This is not true for all etch rate curves, however. A user is permitted to feed any etch
rate curve into 2detch_faces, not just curves developed with the other two modules. Given
any etch rate curve, the 2detch_faces program outputs a list of candidate face orientations for
concave comers, followed by a list of candidate face orientations for convex comers.

The program works by first finding all local extrema of the etch rate curve. Every
extremum is tested to see if it is concave or convex. (If it is neither, it is arbitrarily classed as
concave—due to floating point inaccuracies, this is an arbitrary choice. It could be classed as
convex with little effect on the final result). The region between each pair of successive
extrema is then split by evenly distributing a user-specified number of points between them.
Each of these points is tested to see if the curve is concave or convex at the given point.

A numerical technique must be used to test for concavity of the slowness curve. To
perform this test, the program examines the magnitude of the slowness curve at two angles
that lie some small A@ away from the given orientation. A8 is chosen to be half the interval
between the orientations supplied to 2detch _faces. A straight line is then constructed
between the points on the slowness curve at 8 = ¢+A6 and 8 = ¢—A0, where ¢ is the orienta-
tion in question. The value of r on this line is computed at 6 =¢, and is compared to the
value of the slowness curve at ¢. If the point on the line has greater r, the curve is concave at
that point.

One interesting implementation issue was the calculation of the etch rate at an arbitrary
orientation between the points explicitly supplied in the input. The etch rate is input as a list
of (rate, orientation) pairs, so 2detch_faces must interpolate between these points to come up

25

26

with a continuous function. Linear interpolation in polar coordinates was used for this. For
efficiency, the interpolation points are maintained in a sorted array, and a binary search is
used to find the bounding interpolation points. This results in an etch rate calculation that is
O (log n). This could be further improved to O (n) with hashing.

One consequence of the linear polar coordinate interpolation is that values of the etch
rate curve must be supplied to 2detch_faces to at least as fine a grade as 2detch_faces checks
for important orientations. If it isn’t (i.e. if the etch rate function is undersampled), then
2detch_faces will be testing the arcs that result from its own linear interpolation for concav-
ity at some points. This arc will always be convex, regardless of the underlying etch rate
function.

3. Etching Simulator

The final module is the actual etching simulator. This program (called 2detch) accepts
an initial shape, and a model of the etch rate function such as 2detch_rate and 2detch_faces
produce. This program then produces a file describing the shape into which the original
shape is transformed after etching for a specified period of time. The simulator is also capa-
ble of producing a line-drawing animation of the etching process (under X windows). The
shape being etched is input and output in the Unigrafix language.

The program begins by reading in the etch rate data and the initial shape. As was noted
earlier, new faces may appear at corners. The output of 2detch_faces contains a list of candi-
date face orientations. The convex hull algorithm developed in the previous chapter is used
to determine which of these candidate faces will actually grow. These faces are added to the
comer as infinitesimal ‘‘virtual faces’’.

Once all of the faces are added to the shape, the velocity at which each edge advances is
determined from the etch rate curve. Next, the velocity of each vertex is determined, from
the following formula:

sy =)

where s, is the slowness value for the vertex, 5. is the slowness value of either of the edges,
and /, is the unit vector perpendicular to the line that joins the slowness vectors of the two
edges.

When all of the vertices have been assigned velocities, each face has its -gri— calculated,

and faces with negative % are assigned a ‘‘time to live’’, that is, amount of time until they
are etched away to zero length.

One complication of the program is that sometimes there are non-local contour
changes: a shape is ‘‘etched through’’, that is, one polygon splits and becomes two. To han-
dle this, the program calculates how long it will take each vertex to collide with every face in
the object, and assigns to each vertex a ‘‘time to collide’” which is the minimum such value.
One possible speed optimization would be to make this process more efficient, perhaps by
maintaing a list of edges with which each vertex could possibly collide, and by partitioning
all of the scene space into small local cells.

Once all of the above calculations are complete, the program moves forward by a time
step of t =min(f ,v,u), where f is the face time to live, v is the vertex time to collide, and u
is a user-specified time step. All vertices are moved by 7,. The program then makes any

Chapter 4 Anisotropic Crystal Etching

27

contour changes that are necessary (deleting faces that have etched away, and splitting con-
tours if a vertex has collided with a face). It continues to do this until it has reached the
specified finish time for etching, or until the entire shape is etched away to nothing.

To view an animation of the etching process, the user may specify a maximum time
step per frame. If this is done, a wire-frame drawing of the shape is produced at each time
step. There is also an option to pause for a keystroke between frames, and to output inter-
mediate shapes to UniGrafix files.

Figure 4.1 shows an example of the output of this program. The starting shape is a
square with vertical and horizontal faces. The etch rate function used was the one developed
in Chapter 2 (see Figure 2.12 for the etch rate diagram). From this output one can readily see
that the fast (1,2) and (2,1) faces dominate the etching at convex corners. Figure 4.2 shows a
shape with a concave comer. At the concave comer, the appearance of the slow faces ((0,1),
(1,1) and (-1,1)) is apparent. Figure 4.3 shows a shape that starts with two internal holes. As
the etching progresses, these holes merge. Somewhat later, they merge with the outer con-
tour and break the shape open. Toward the end of the etching process, the shape breaks into
four separate pieces.

Chapter 4 Anisotropic Crystal Etching

=
g

Figure 4.1. This figure shows the etching of an object that starts out as a square. It was
etched with the etch rate curve pictured in Figure 2.12. Successive contours of the object at
uniform time steps are pictured.

Chapter 4 Anisotropic Crystal Etching

Figure 4.2. This figure shows the etching of an object with a concave comer.

Chapter 4 Anisotropic Crystal Etching

29

30

Figure 4.3. This figure shows the etching of an object that starts out having two internal
holes.

Chapter 4 Anisotropic Crystal Etching

CHAPTER 5

3D ETCHING RATE MODEL

The development of an etch rate diagram in three dimensions follows a derivation simi-
lar to that of the two-dimensional case. Only crystals with one atom per unit cell are con-
sidered, and secondary effects of the etchant working on a substance, such as surface heating,
convection, and non-uniform distribution of the etchant are ignored. To simplify analysis, in
3D only the case of a cubic crystal lattice is analyzed Notatlonally, the unit cell of the 3D
crystal lattice is described with the three vectors l,,, l and l,, in the direction of the cartesian
coordinate axes. For a cubic crystal lattice, these w1ll be equal to the unit basis vectors { _]
and &, respectively.

The probability of an atom being etched away during one time step is again modeled as
the product of the probabilities of its bonds breaking. For each atom, only the bonds to its six
possible nearest neighbors are considered. Bonds in internal corners or within the crystal are
expected to have a much lower probability of breaking because the geometrical obstruction
renders the attack of the etchant difficult.

1. Face Characterization

Figure 5.1. This figure illustrates the (1,2,3) face.

31

32

As in 2D, in 3D a face is generally characterized by its Miller indices (i,j,k). Figure
5.1 is an illustration of the (1,2,3) face. As in 2D, the Miller indices are determined by con-
sidering where a face intersects the axes. For any face, the intercepts can be scaled such that
they occur at IT‘ —Ij’— and —lkz— One can also think of the Miller indices as a scalar multiple of
the components og the normal vector to a face in the coordinate system defined by the basis
vectors I, [, and /;. In the case where the lattice is cubic, the Miller indices are thus equal to
the components of a vector normal to the face.

In crystallography, the Miller indices are generally scaled so that they are all integral.
For our purposes, it is more convenient to scale them such that one of them is exactly 1, and
the others are either O or have magnitude greater than or equal to 1. As an example, the face
parallel to the xy plane is the (0,0,1) face.

Because we are only considering crystals with orthogonal basis vectors (i.e. we do not
allow for monoclinic or triclinic crystals), the sign of the intercepts of a face with the axes is
insignificant. Faces with normal vectors (pointing out of the object) of (1,1,1), (1,-1,1), and
(-1,-1,-1) all have the same bond pattern, and therefore the etch rates have the same formula-
tion. In our analysis, we constrain the Miller indices to all be non-negative. In the case of a
cubic crystal lattice, the above three faces would all have Miller indices of (1,1,1).

flll

Figure 5.2. This figure illustrates the family of ‘‘f ’* bonds. The bond itself is shown as a
heavy line, and the atom being considered for removal is shown as a double circle. The
shading indicates the boundary of the object.

Chapter 5 Anisotropic Crystal Etching

33

2. Bond Classification

We identify three basic types of bonds: ‘b, “‘f”’, and ‘‘¢’". A b bond is one that
goes into the bulk of the crystal, as in the strongest bond of the (0,0,1) face. An f bond (see
figure 5.2) is a bond on a face of the surface with two coplanar facets attached. An e bond
(see figure 5.3) is a bond at a convex edge. The number of primes attached to the latter two
indicates how many obstructing atoms forming bonds at concave angles are attached to the
other end of the bond at the atom considered for removal. As a further characterization the
formulation (k—m.n) is used. This describes the neighborhood of the bond in question. &
specifies how many other bonds are attached to the atom that we consider for removal, in a
plane nomal to the bond. m specifies how many other bonds are attached to the bond at its
other end in a plane normal to the bond. n specifies how many of the eight nearest neighbors
in that second normal plane are actually present.

With this, the probabilities for removal of a first individual atom from a particular sur-
face can be readily derived. For this analysis, the following quantitative numbers for bond
breaking will be used. The ratios of these rates are based on educated guesses. When used in
our simulation program, they seem to give reasonable results that are comparable to some
experimentally observed macroscopic etching behavior.

Figure 5.3. This figure illustrates the family of “‘e’’ bonds. Again, the bond itself is shown
as a heavy line, and the atom being considered for removal is shown as a double circle. The
shading indicates the boundary of the object.

Chapter 5 Anisotropic Crystal Etching

34

NAME CHARACTERISTIC RATE
b (4—4.8) 0.003
£ (3—4.38) 0.007
£ 347 0.01
f (3—3.6) 0.02
f (3-3.5) 0.05
e’ (2—4.8) 0.07
e’ 2—47 0.1
e’ (2—-3.5) 0.2
e (2—2.3) 0.5

The further assumption is made that at atoms in concave comers will not be attacked at all,
and that atoms loosely attached through 2D ‘‘membranes”’, i.e. (1—x) or (0—x), will be
removed immediately.

3. Etch Rates at Key Face Orientations

As a first step in deriving an etch rate surface from bond strength parameters discussed
above, the etch rate for several ‘‘key’’ face orientations is analyzed. Six such key orienta-
tions are studed: the orientations where the geometry of the face represents some kind of
limiting case of the type of bond patterns present on the surface of the crystal. In the 2D
case, the key orientations turned out to be the (1,0) face, the (2,1) face and the (1,1) face (the
other key faces were geometrically similar to these). In 3D, there are six types of bond
arrangements, exemplified by the (1,2,2), (1,1,2), (1,1,1), (0,1,2), (0,1,1) and (0,0,1) faces.
These faces are pictured in Figure 5.4. We shall examine each face in tum. As in 2D, we
assume that the probability that an atom gets removed is the product of the probabilities that
all the bonds that hold it in place get removed.

At several of the face orientations, etching proceeds as an initial ‘‘attack’’ phase, fol-
lowed by a *‘stripping’’ phase, much as was the case for the (1,0) face in 2D. In 3D, of
course, the ‘‘stripping’’ phase may proceed along a one-dimensional edge or a two-
dimensional surface.

The atom stripping process along a 2D ledge is first re-examined. The analysis in the
2D section is not adequate for use here because it is not very accurate where the comers have
almost the same removal probability as the initial attack sites.

a denotes the attack rate on a virginal (1-dimensional) surface for removal of the first
atom. ¢ is the removal rate of an atom at the boundary of the stripping area, and [is the
removal rate for the last atom between two stripping regions.

For this simple estimate of the compound etchrate produced by the attack-and-strip
action on a 1-dimensional surface we make the following assumptions. New holes get started
in sequence along the surface, one per clock tick, at regular distances D from one another.
After G generations two adjacent holes have merged and a new hole is started in that place in
the next generation. The hole starts with size 1 (atom) after the attack, and grows at a rate of
2c per generation. The last atom gets removed at rate /, rather than ¢. Thus it holds:

D =1++2cG—c (equation 1)

The last term appears since the neighbor hole starts one generation later.

Chapter 5 Anisotropic Crystal Eiching

35

| {0, 1, 0]

[1.1. 1} ‘ 2,2, 1]

Figure 5.4. This figure illustrates the six key face orientations in 3D.

A simple argument would tell us that we need a surface of size N atoms to get perfectly
periodic conditions, where exactly one attack happens in every generation, where
Na =GDa =1. However the above situation is the best possible, because every attack at rate
'a’ starts successfully a new hole. The calculated compound rate turned out to be too high
by at least 50% and sometimes even more than 100% when compared to a statistical simula-
tor that modeled this etching situation. We need to add a correction factor to take into
account that sometimes the attack on the surface will not produce a new hole. This is the
case when the attack occurs immediately adjacent to an existing ledge (hole boundary). If the
attack occurs on the inside, we assume that it has no effect because the atom is protected by
the nearby ledge from being removed. If the attack occurs on the comer atom of the ledge, it
simply widens the hole, but does not produce a new one. Thus for every existing hole there
are 4 atoms where the attack does not start a new hole. Since we assume that there is a hole
every D atoms the net rate at wich new holes start is only a(D—4)/D. Thus we get the
equality:

GD-4a=1 (equation 2)
Combining equations 1 and 2 we get a quadratic equation for G:

1=GaQ2cG-3+-c)
or for the compound rate R =1/G:

Chapter 5 Anisotropic Crystal Etching

36

R2-Ra(l—c-3)—2ac =0

The meaningful solution becomes:

R =a(\/2a£+t2—:) wheret =0.5 (3+¢ — 1)

We can explore a few special cases:
For I=c this simplifies to:

R=—32‘i(\/—§%+1-1)

and for ! =¢ =a it becomes:

R=—32‘i(\/ -1=05616a

The last rate is lower than the attack rate a, because we assume that the atoms on the lower
side of a ledge do not get attacked. Since the rates ¢ and I are equally low as the attack rate
a, there is a high density of small holes and thus nearly half the atoms lie in these protected
positions.

We still have a rather idealistic situation as the basis for our analysis. The statistical
simulator predicts for this extreme situation a compund rate of 0.45a. A detailed statistical
analysis is beyond the scope of this report. In the situations that we need for the analysis of
the key etch rates on 3-dimensional crystals, the above formula agrees with the simulator
within 10%. This is good enough given the many rather drastic simplifying assumptions that
we had to introduce into the derivation of the key etch rates.

With these formulae, we can proceed to the analyses of the six key faces.

3.1. The (1,2,2) Face

Applying the .appropriate bond probabilities into the formulae developed above, one
obtains:

Removal of first surface atom: e”2e =0.0050

Removal of comer atoms in (1,1) ledge: ¢”¢’e =0.0100
Removal of last atom in ledge: e’2e =0.0200

Frate 122= 0.0017

Removing one row of atoms like that results in a picture identical to that with which we
started; the net face propagation rate, therefore, can be calculated from the cosine of the
relevant angles (as in 2D).

3.2. The (1,1,2) Face

Removal of first surface atom: e”’¢’%=0.0028

Removal of comer atoms in (1,1) ledge: ¢”’¢’e =0.0070
Removal of last atom in ledge: €”’e?=0.0175

Frate L12= 0.0033

Chapter 5 Anisotropic Crystal Etching

37

3.3. The (1,1,1) Face

Removal of first surface atom: e”3=0.0010

Removal of comer atoms in (1,1) ledge: ¢”2¢’ =0.0020
Removal of last atom in ledge: e”¢’? = 0.0040
Frate,;,=0.0010

3.4. The (0,1,2) Face

Removal of first surface atom: f”’fe? =0.000088
Removal of comer atoms in (1,1) ledge: ¢”¢’e =0.0070
Removal of last atom in ledge: 1.00

Frateg2=0.0010

This is the composite recession rate of this ledge. The etch rate perpendicular to the face nor-
mal is 0.0008. Because it is needed later we compute the strip rate for an edge between the
(0,1,0) and the (0,0,1) faces:

Removal of first surface atom: f 2e?=0.00063
Removal of corner atoms in (1,1) ledge: €’2e =0.020
Removal of last atom in ledge: 1.00

Erateg 2 = 0.0044

3.5. The (0,1,1) Face

Removal of first surface atom: f”’2e2=0.000012
Removal of comer atoms in (1,1) ledge: €”2e =0.0025
Removal of last atom in ledge: 1.00

Lrate 01,1= 0.00023

This is the composite removal rate for the first ledge. The adjacent ledges now get removed
at the faster rate calculated above for the (0,1,2) face. This constitutes a second level of
attack and strip action:

Removal of first row of atoms occurs at rate: Lrate 1,1 = 0.0002
Removal of adjacent rows of atoms occur at rate: Frateg 2= 0.0010
Removal of last row of atoms between strip areas: Erateg ;2 =0.0044
Frateo'l,l = (0.00042

3.6. The (0,0,1) Face
Removal of first surface atom: a = bf *=6.25-10"°

This causes a hole that is bounded by the (1,2) type ledges for which the recession rate has
been computed in the (0,1,2) face. With the above rates determined, the compound rate on
the (0,0,1) flat can be computed. This now involves a two dimensional stripping action.
After the initial attack that removes one atom from the surface it is assumed that there is a
spreading square hole that opens up with the rate of the receding staircase steps calculated for
the (0,1,2) face (R = Frateq2). The area of that hole after G generations is 4R2G?2, and on a
surface with N atoms there will be NaG holes. In the equilibrium this relation holds:

4R2G?NaG =N
thus

Chapter 5 Anisotropic Crystal Etching

38

-1
G =(@R%)7

G is the number of generations it takes to remove one layer of atoms. The face removal rate
is its inverse:

1
Fratego = (4R%a)? =2.97-10°5

3.7. Results

From all of the above-calculated atom-layer removal rates the actual etch rates in lattice
constant units are calculated by projecting on the respective face normals. The following
rates are obtained:

(1,2,2) Face: 0.0050-0.333=0.0017
(1,1,2) Face: 0.0033-0.408 =0.0014
(1,1,1) Face: 0.0010-0.577 =0.00058
(0,1,2) Face: 0.0010-0.447 =0.00046
(0,1,1) Face: 0.00042-0.707 = 0.00030
(0,0,1) Face: 0.000030-1.0 =0.0000305

Of course, it is permissible to uniformly scale these rates by any real number, since nothing
has been said about the units with which the velocity is expressed. Normalized, relative
slowness values for the six key directions can therefore be computed:

(1,2,2) Face: 1.0
(1,1,2) Face: 1.2
(1,1,1) Face: 2.9
(0,1,2) Face: 3.7
(0,1,1) Face: 5.6
(0,0,1) Face: 56

4. Etching Rates between Key Orientations

To determine etch rates at face orientations other than the six key rates, we recall that
the slowness shape in 2D was very nearly approximated by straight lines connecting the key
rates. We assume, by extension, that in 3D the entire etch rate slowness surface can be
approximated with planar triangles between the key etch rates. This results in the slowness
surface pictured in Figure 5.5.

The difference in etch rates is too extreme for any detail to be visible in Figure 5.5. To
make the shape more apparent, in Figure 5.6 every vertex is scaled so that its distance to the
origin is the logarithm of the slowness value. This is not the same as a logarithmic plot of the
curve: In a true logarithmic plot, the faces would no longer be planar. Finally, Figure 5.7
shows the projection of the key directions onto the unit sphere with the corresponding tri-
angular facets between them.

Chapter 5 Anisotropic Crystal Etching

Figure 5.5. This shows the slowness contour of the etch rate function derived in this chapter.

Chapter 5 Anisotropic Crystal Erching

39

Figure 5.6. This shows the slowness contour of the etch rate function derived in this chapter,
where every vertex is scaled such that its distance to the origin is the logarithm of the slow-
ness value.

Chapter 5 Anisotropic Crystal Etching

40

Figure 5.7. This shows the projection onto the unit sphere of the key directions, forming
corresponding triangular facets between them.

Chapter 5 Anisotropic Crystal Etching

41

CHAPTER 6

3D LOCAL GEOMETRY ANALYSIS

In this chapter, the behavior of a three-dimensional shape subjected to etching is
analyzed. A model of etching such as that developed in the previous chapter is assumed,
specifically, it is assumed that the etch rate can be modeled as a slowness surface composed
of planar triangles formed from triplets of slowness vectors at the key etching directions.
From this assumption algorithms are developed that allow the simulation of the etching pro-
cess at the level of faces, edges, and vertices.

This analylsis is not restricted to cubic, or even orthorhombic crystal lattices. The algo-
rithms developed herein can therefore be applied to etch rate functions much more general
than the model function developed in the previous chapter.

1. Behavior of Vertices

As in 2D, at a vertex one can imaging a collection of infinitely many infinitesimal faces
at all orientations ‘‘between’’ the original orientations present. These faces ‘‘compete’;
those that grow the fastest will dominate. To determine what will happen to the local
geometry around a vertex, one must first determine which faces might potentially form. The
infinite set of all possible surface orientations is inspected to decide which of those orienta-
tions correspond to faces that could possibly grow to finite size in the shape being etched. It
turns out that all but a few surface orientations can be eliminated from consideration with an
analysis of their neighborhood in the slowness surface. Aditionally, many faces are pre-
cluded from forming by the arrangement of faces at the vertex being considered (because a
new face may not cut into the bulk of the shape being etched). We call the set of surface
orientations that cannot be eliminated based on the above two constraints the set of *‘candi-
date faces’’.

1.1. Candidate Faces

To determine which faces could possibly form at a vertex, an analysis parallel to that of
Chapter 2 is followed. This analysis again uses Frank’s theorems, which state that new faces
will only form at points where the curvature of the slowness curve is either concave or con-
vex. Since our simplified slowness surface is made up of planar faces, the only parts of the
slowness surface that correspond to candidate faces are its edges and vertices. Thus, we can
restrict the set of candidate faces a priori to contain only faces with orientations along edges
or on vertices of the slowness surface.

We shall first consider the simplest case: a ‘‘convex vertex’’, formed by the meeting of
three planar faces. The term ‘‘convex vertex’’ is used to mean that that the three edges that
meet at the vertex are all convex. As an aid to visualization, the ‘‘vertex figure’’ is formed.
This is done by projecting onto the unit sphere the normal vectors for all three faces present.
The normals of adjacent faces (those that share an edge) are connected with great-circle arcs.
This vertex figure can also be projected onto a suitable plane. Figure 6.1 illustrates a vertex

42

43

Figure 6.1. This figure illustrates a convex vertex formed by the faces A, B and C, and the
corresponding vertex figure.

Figure 6.2. This figure shows the vertex figure of a convex vertex (that of Figure 6.1) over-
layed with a region of the projection of the slowness shape onto the unit sphere. The given
faces are shown as small circles, and the key directions are shown with small squares.

and its corresponding vertex figure. From inspection of the vertex figure, it is clear that the
set of candidate faces can be restricted to include only face orientations within the vertex
figure. To visualize the two constraints we have placed on the set of candidate faces, it is

Chapter 6 Anisotropic Crystal Etching

useful to superimpose the vertex figure of the vertex under consideration onto the triangulated
unit sphere of Figure 5.7. This is done in Figure 6.2.

In Figure 6.2 there are two key slowness directions that fall within the vertex figure.
This means that the set of potential faces that form at the vertex will contain two members,
with normal vectors equal to those two orientations. New bevel faces might also form along
an edge of our object at points where the corresponding edges of the vertex figure intersects
with an edge of the unit sphere projection of the slowness surface. For example, edge AC has
four such crossings; the set of potential faces for edge AC thus contains four members
corresponding to those four crossings. Note that one crossing passes directly through the
point A on the vertex figure. This implies that a new face might form at this orientation.
This point can be eliminated from consideration, because there is already a face of this orien-
tation present in the shape: face A.

The same analysis clearly holds at any vertex that is convex, that is, any vertex that is at
the intersection of several edges, all of which are convex. In the case of a vertex formed by
more than three faces, the vertex figure would no longer be a triangle, but it would still be a
convex polygon. This same analysis also works for a vertex that is (totally) concave, that is,
any vertex that is at the intersection of several edges, all of which are concave.

A problem arises at vertices that might loosely be classified as ‘‘saddle’’ vertices, which
includes all vertices at the intersection of several edges, some of which are concave and some
of which are convex. The simplest such vertex, one at which there are two convex edges and
one concave edge, is pictured in Figure 6.3. In the vertex figure, a convex edge is shown as a
solid line, and a concave edge as a dashed line.

Figure 6.3. This figure illustrates a saddle vertex formed by the faces A, B, and C. Edges
AB and BC are convex, whereas edge CA is concave.

Chapter 6 Anisotropic Crystal Etching

45

One source of new faces at any vertex are the bevel faces that form when an edge splits.
The faces will form regardless of the configuration of the vertices at the endpoints of an edge,
because their formation does not depend on any process taking place at the endpoints. The
formation of bevel faces is discussed in the next section of this chapter.

In the absence of bevel faces, we assert that no new faces can form. Inspection of such
vertices reveals that were such a face to be present, it would necessarily cut through the bulk
of the object being etched. This would contradict the presence of one or more of the edges
that make up the vertex. Whereas the edges of the object being etched may certainly disap-
pear over time, they certainly can not disappear instantaneously (or in infinitesimal time).
From these observations, we conclude that an area of a vertex figure bounded by a combina-
tion of concave and convex edges represents a range of face normals corresponding to faces
that cannot form at the given vertex.

A more complicated case is illustrated in Figure 6.4. This figure shows a saddle vertex
formed by four faces. In this case the vertex ‘‘looks’’ like a convex vertex: all of the edges
fit into one half-space. The point I corresponds to the orientation of the plane that contains
edges DA and BC. From inspection, we conclude that the set of candidate faces is the set of
vectors that fits within the triangle ABI. The area within triangle CDI is rejected, by exten-
sion of the argument for the previous example.

The fourth (and final) case is illustrated in Figure 6.5. This illustrates what might be
called a *‘true’’ saddle vertex: The edges that form the vertex do not all fit in any one half-
space. The vertex figure for this vertex is similar to that in Figure 6.3, in that it has no cross-
ings but has a mixture of concave and convex edges. From inspection of the geometrical

A B

Figure 6.4. This figure illustrates a saddle vertex formed by the faces A, B, C, and D. Edges
AB, BC and DA are convex, whereas edge CD is concave. I is simply the point at which the
vertex figure crosses itself.

Chapter 6 Anisotropic Crystal Etching

46

shape and analogy with other vertex figures, we conclude that no new faces form at such ver-
tices.

We assert that all possible vertex configurations can be classed as one of the above four
types. The above analysis leads directly to a relatively simple algorithm to determine the set
of candidate face orientation. This algorithm accepts a vertex figure (in which all edges are
colored either ‘‘concave’’ or ‘‘convex’’), and returns a set of candidate face orientations (for
the formation of new faces at the vertex). It is presented in C-like pseudocode:

candidate_faces(vertex_figure)
-- Returns a set of candidate face orientations

If vertex_figure contains any crossings,
split vertex_figure into figures f 1 and f 2 on either side of a crossing,
return union(candidate_faces(f 1), candidate_faces(f 2)),

else if the edges of vertex _f igure aren’t all the same color,
return the null set,

else
return the candidate face orientations within vertex_figure
(since we know that vertex_figure is a convex polygon).

> IR

Figure 6.5. This figure illustrates a saddle vertex formed by the faces A, B, C, and D. Edges
AB and CD are convex, whereas edges BC and DA are concave.

Chapter 6 Anisotropic Crystal Etching

47

1.2. Dominant Faces

In this section, an algorithm is developed that will tell us which of the candidate faces
will ‘‘dominate’’ and eventually grow to finite size. Such faces (those that actually end up
growing to finite size) are called ‘‘virtual faces’’. The following analysis, therefore, deter-
mines which of the candidate faces dominate, and form virtual faces. These faces are called
““vertex virtual faces’’, because they form at a vertex. This is as opposed to ‘‘edge virtual
faces’’ (also called bevel faces) that form along an edge.

At a convex vertex, the analysis from Chapter 2 can be naturally extended to three
dimensions. The convex hull around the slowness vectors of the candidate face orientations is
again constructed. Those slowness vectors that are on the inner part of the convex hull that is
visable from the origin correspond to virtual faces. Similarly, at a concave vertex, the slow-
ness vectors on the outer part of the convex hull (invisable from the origin) correspond to vir-
tual faces.

Saddle vertices require some more analysis. If a saddle vertex has any candidate faces,
they must have been from a part of the vertex figure that had edges that were all colored
“concave’’ or ‘‘convex’’. If we remember from what kind of region each candidate face
came, this can be used as a criterion for whether the corresponding slowness vector must be
on the inner or the outer part of the convex hull in order to be considered a virtual face.

2. Behavior of Edges

As noted before, edge virtual faces can form at face orientations where the correspond-
ing edge of the vertex figure crosses a triangle edge of the tessellated unit sphere. For any
edge, therefore, the set of these crossings constitutes the set of candidate faces. By direct
extention from 2D, the (one dimensional) convex hull around the slowness vectors of the can-
didate faces can be formed. For a convex edge, those slowness vectors on the inner part of
the convex hull will be those corresponding to virtual faces. For a concave edge, the slow-
ness vectors on the outer part of the convex hull will be those corresponding to virtual faces.

3. Splitting a Vertex

Once the set of virtual faces present at a vertex is known, the next task is to split that
vertex appropriately. For example, a convex vertex at the intersection of three faces that has
one vertex virtual face present and no edge virtual faces will split into three vertices. If we
call the three original faces A, B and C, and we call the vertex virtual face D, then the three
resulting vertices will be ABD, BCD and CAD.

It is useful to consider at this point what determines a vertex. Essentially, a vertex is
unambiguously determined by the intersection of 3 linearly independent planes. If there are
four planes present at a vertex, that vertex might potentially split into two vertices, although
these vertices might be coincident. This consideration in mind, it is useful to define an “‘s-
vertex”’ (for *‘simple vertex’’) as the point at the intersection of three planes. When a vertex
is analyzed, it is sufficient to produce a list of s-vertices. Each of these s-vertices will have
the same initial position in space, but they will have potentially different velocity vectors.

Chapter 6 Anisotropic Crystal Etching

48

3.1. Vertex Splitting without Vertex Virtual Faces

Initially, we analyze how a vertex splits in the absence of vertex virtual faces. At this
point an example would be helpful. Consider the shape shown in Figure 6.6, where faces A,
B, C and D meet at a convex vertex.

The shape in Figure 6.6 can be represented schematically with the intersection tree of
Figure 6.7. Each node of the tree corresponds to an s-vertex, and each line corresponds to an
f-edge. The heavy lines that are unterminated at one end correspond to the edges originally
present in the shape.

A more complex case is pictured in Figure 6.8. This shows a more complicated shape
that contains edge virtual faces. A complete intersection tree can be constructed by operating
on a set of the f-edges originally present at the vertex.

We define a set o that is derived from the original edges present at the vertex. We call
the new edges in o ‘‘f-edges’’ (for *‘future edge’’). They are located at the position in space
that is the sum of the edge’s velocity and its position, that is, they lie where the original edge
would have moved in one unit time. Each f-edge is also characterized with the two faces that
share the edge, a point on the edge, and a vector pointing along the edge. This vector must
point toward the next intersection point of that edge (i.e. away from the remote vertex on this
edge). For this reason this vector is called the *‘toward vector’’, and is denoted with, for
example, ‘‘toward(AB)’’. Each f-edge is also marked as convex or concave. The original set
o for the intersection tree shown in Figure 6.7 would contain AB, BC, CD, DE, EF, FG and
GA.

Figure 6.6. The figure shows a view from above a convex vertex formed by four faces A, B,
C and D. The figure on the right shows how this vertex might develop (assuming no virtual
faces) if it splits into vertices ABC and CDA.

Chapter 6 Anisotropic Crystal Etching

49

DA AB
A
AC
D B
¢D ¢ BC

Figure 6.7. This figure shows the intersection tree corresponding to the shape pictured in
Figure 6.6. The heavy lines are the edges present in the original shape. In this figure the
edges have been individually labeled for greater clarity; this will not be done in subsequent
intersection trees.

A
B N
C
D E
Figure 6.8. This figure shows the intersection tree corresponding to a complex shape con-
taining several edge virtual faces. Faces A, D, E and G were originally present at the vertex,

and faces B, C and F are edge virtual faces. Again, the heavy lines are the edges present in
the original shape.

The set oo may be simplified, under certain conditions, by intersecting two adjacent f-
edges. For example, the above o can be simplified by intersecting the f-edges CD and DE,
producing a single f-edge CE. For each original f-edge, the toward vector and convex flag
was already determined. When a new f-edge is created, however, these values must be calcu-
lated.

To analyze this, consider the intersection of three general planes, A, B, and C (in coun-
terclockwise order viewed from outside of the shape being etched). The edges between these
faces are called AB, BC, and CA. Each edge XY has a vector toward(XY) associated with it

Chapter 6 Anisotropic Crystal Etching

50

that points from the remote vertex on that edge toward the intersection point currently being
considered. Each edge also has a flag convex(XY) that denotes if the edge is convex or con-
cave. For the purposes of simplifying the set «, the f-edge pair CA and AB are intersected to
produce the edge BC.

In the following, saying that one vector is "equal” to another means that it points in the
same direction—the magnitude is not important. Two vectors being "not equal” (i.e. "!=")
means that they point in directions opposite to each other. The notation "v1 d= v2" is a
weaker statement: it means that the vectors have a non-negative dot product (intuitively, it
means that they point in a similar direction).

This analysis uses the following theorems:

Theorem 1:
normal(C) cross normal(A) = toward(CA) iff convex(CA)

Theorem 2:
toward(CA) cross toward(AB) '= normal(A)
iff convex(CA) = convex(AB) & & convex(CA) != convex(BC)

Corollary 2a:
toward(CA) cross toward(AB) = normal(A)
--> convex(CA) !'= convex(AB) Il convex(CA) = convex(BC)

Corollary 2b:
toward(CA) cross toward(AB) != normal(A)
--> convex(CA) = convex(AB) && convex(CA) != convex(BC)

Theorem 3:
convex(CA) = convex(AB) -->
convex(CA) iff normal(A) d= toward(BC)

Corollary 3b:
convex(CA) && convex(AB)
--> normal(A) d= toward(BC)

Corollary 3c:
lconvex(CA) && !convex(AB)
--> normal(A) !d= toward(BC)

Given complete information on two edges that are meeting at an intersection point we
must determine the convex() and toward() values of the third vector at this point. Put more
formally:

Given: toward(CA) convex(CA) normal(A)
toward(AB) convex(AB) normal(B)
normal(C)

We wish to find:

Chapter 6 Anisotropic Crystal Etching

51

toward(BC) convex(BC)

Additionally, it is not know known a priori whether A, B, and C are in clockwise or
counterclockwise order.

First, Theorem 1 is used to check that A, B, and C are in counterclockwise order,
namely:

normal(C) cross normal(A) = toward(CA) iff is_convex(CA)

If this generates a contradiction, B and C are swapped.

Following this, some detailed analysis is required to deduce convex(BC). First, using
Theorem 2 to break the analysis into two cases:

Case 1: toward(CA) cross toward(AB) != normal(A)
convex(BC) = 'convex(CA) Directly from Theorem 2.
Case 2: toward(CA) cross toward(AB) = normal(A)

Case 2a: convex(CA) = convex(AB)
--> convex(BC) = convex(CA) Directly from Theorem 2.

Case 2b: convex(CA) != convex(AB)

convex(CA) can’t be determined. We mark convex(CA) as
UNDETERMINED.

Now it is possible to determine a value for toward(BC) using Theorem 1.
nomal(B) cross normal(C) = toward(BC) iff convex(BC)

If convex(BC) is UNDETERMINED, toward(BC) is computed as though BC were convex.
When the other intersection point of that edge is found, if it tums out that this guess was
incorrect, toward(BC) is reversed and convex(BC) is set FALSE.

As was noted above, adjacent f-edges may intersect each other under certain conditions.
Obviously parallel f-edges may not intersect. Another case where f-edges may not intersect
is pictured in Figure 6.9. in this case, edge AD would be intersected by edge AC at a point x
before its origin. This would imply that toward(AC) were incorrect, which contradicts the
analysis that produced toward(AC). This means that edges AC and AD cannot intersect each
other, and another pair of f-edges must be tried.

To find the complete intersection tree at a vertex, we use a depth first recursive search
over the set o, applying the f-edge intersection operation defined above. This algorithm is
called split_vertex().

Chapter 6 Anisotropic Crystal Etching

52

A/ B
X
E |D ¢

Figure 6.9. This figure shows a pair of f-edges AD and AC that can not intersect.
Remember that each f-edge has a direction vector, and cannot intersect at a point opposite it.

split_vertex(o)

-- Returns an intersection tree corresponding to what the vertex v will split
into under etching. Returns a null tree if o violates a constraint.

If o has exactly 3 members,
return the s-vertex formed by the three faces present in CL.
fi
For each pair of f-edges a,b on o do:
Let ¢ be the f-edge obtained by intersecting @ and b .
If no constraints were violated,
replace the pair @ ,b with ¢ in @,
let 7 be split_vertex(ov),
if T is not the null tree,
add the branch corresponding toc © S,
return S,
fi,
restore O to its original value,
fi.
rof
Return the null tree.

3.2. Vertex Splitting with Virtual Faces

We now consider forming the intersection tree in the presence of vertex virtual faces
(vv-faces). Such an intersection tree is shown in Figure 6.10. We start with the intersection
tree T formed by the split_vertex() algorithm, to which we add branches for the edges origi-
nally present at the vertex (i.e. the original members of c). These additional branches are
called ‘‘leaves’’, because they are unterminated at one end.

Note that branches of the intersection tree are very much like f-edges. They are formed
by the intersection of two faces, and they can be marked as either convex or concave.

Chapter 6 Anisotropic Crystal Etching

53

Figure 6.10. This figure shows the intersection tree of two possible evolutions of a vertex
that originally has faces A, B, and C, and at which one or more vertex virtual faces form.
The dashed lines on the left represent what the intersection tree would look like in the ab-
sence of vertex virtual faces.

Branches are also bounded by faces at either end (in figure 6.7, branch AC is bounded by
faces D and B). Branches also have a ‘‘toward’’ vector that points along the edge from one
bounding face to the other.

Vertex virtual faces are introduced into T by intersecting a branch b of T with a vv-
face. For example, a branch AB intersecting with a vv-face C produces two new branches,
AC and BC. When this is done, the convex flag and toward vector of each of the two new
branches must be calculated. This tuns out to be much simpler than when two f-edges inter-
sect, because either both new edges are convex, or both are concave. Because of this, we can
apply Theorem 3 directly:

convex(BC) iff normal(C) = toward(AB)
and
convex(CA) iff normal(C) = toward(AB)

Similarly, toward(BC) and toward(CA) come directly from Theorem 1:
normal(B) cross normal(C) = toward(BC) <--> convex(BC)

and
normal(C) cross normal(A) = toward(CA) <--> convex(CA)

The intersection point of a vv-face with the two planes that make up a branch might lie
outside the boundaries of that branch. If this is the case, that vv-face does not intersect the
given branch.

We introduce a vv-face into an intersection tree by finding the appropriate intersections
of that vv-face with branches in the intersection tree, and making the appropriate changes to
the intersection tree. This is done for each vv-face in turn. The algorithm that does this is
called push_vvface(). It makes use of the find_intersections() algorithm that proceeds down
an intersection tree until it finds all of the intersections of a vv-face with a given subtree.

Chapter 6 Anisotropic Crystal Etching

54

push_vvface(T , vw—face)
-- Introduces the vertex virtual face vv—face into intersection tree T

For each branch b of T,
mark b as not yet visited,

rof.

For each leaf branch b of T,
find_intersections(b , vw—face),

rof.

For each unvisited branch b of T,
remove b from T,

rof.

find_intersections(b, vw—face)

-- Finds all intersections of vv —face with the branch b or its subtree, and adds
sub-branches, as appropriate

If b is marked as visited,
return,

fi.

Mark b as visited.

If v—face intersects b,
break b ’s links with its subtree,
find or create two branches ¢ and d from the intersection of b with vw—face,
mark ¢ and d as visited,
link ¢ andd to b,

else
for every sub branch s of b

find_intersectons(s , vv—face),

rof,

fi.

3.3. Linking up Contours

Once all of the s-vertices for the entire shape have been determined, all of the contours
on the shape must be re-linked. This is a relatively simple procedure, accomplished by the
routine fix_contours(). In any implementation of this algorithm, some care must be taken to
ensure that the new contours run clockwise or counter-clockwise, as appropriate.

3.4. Re-analysis of Features

Once a vertex splits, it is possible that features will develop that make it possible for
- virtual faces to form that were not possible with the initial shape. This can happen, for exam-
ple, at a saddle vertex formed by four faces. Should such a vertex split into two vertices, one
of them may have a larger set of candidate virtual faces than was originally present. Any
implementation of the above algorithms must re-analyze new vertices and new edges to see if
additional virtual faces form.

Chapter 6 Anisotropic Crystal Etching

55

fix_contours(
-- Introduces new s-vertices into a shape

For each face F do:
If F has any vertices that split,
-- Replace F with a new list of edges:
let FP be an empty list of edges,
pick any edge F.A,
--Fand A are the faces that determine the edge
iet v1 be the vertex F,A X,
-- X is some other face
let v2 be the vertex F,A,Y where Y =X,
repeat
add the edge v1, v2 to FP,
let vl be v2,
let X be A,
letAbeY,
let v2 be the vertex of the form F,A)Y where Y =X,
until we get back to the original v1, v2,
replace F with FP,
fi.
rof.

Figure 6.11. This figure shows a shape with a saddle vertex, and the result of etching that
shape in the presence of one bevel face. As soon as the edge E grows to finite size, bevel
faces might form along it.

A particularly interesting situation can occur when a shape such as that pictured in Fig-
ure 6.11 etches. As the initial shape etches, a bevel face developes. The bottom edge bound-
ing this face is called E. Once this edge grows to finite size it is possible for bevel faces to
form along it. Assume that such a face does indeed form, and further assume that that face
has an etch rate significantly faster than any of the surrounding faces. The result is shown in

Chapter 6 Anisotropic Crystal Etching

57

etching up the shape. This unstable cycle will repeat very quickly on the microscopic level.
The result macroscopically will be a triangular face that is *‘anchored’’ at one end to the ori-
ginal vertex, with a growth rate that is constrained by the growth rate of the bevel face above
it. This is pictured in Figure 6.13. This result is interesting, because this triangular face will
not necessarily be etching at the ‘‘natural”’ etch rate of a face with its orientation. This does
not cause a contradiction with the etching rate model, because a different etching mechanism
is at work.

Any etching simulator implementation must account for faces such as these. The solu-
tion we have adopted is to only re-examine features added to a shape when their size exceeds
a user-specified tolerance. The result will be a sequence of ledges of virtual faces with stan-
dard orientations that together approximate the triangular face with an unusual orientation.

4. Removing Features

After etching for some time, features on a shape will disappear. Since this project only
concemns itself with local contour changes, it is sufficient to detect when the length of an edge
decreases to zero. Of course, many of the edges that are added start out with a length of zero,
s0 it is important to be careful to only detect when an edge with a negative growth rate
assumes a length of zero.

Removing features is not as simple as removing edges that shrink to nothing. First of
all, the resulting vertex must be re-analyzed to find any new virtual faces, and to determine
how the vertex splits. Beyond this, there are two somewhat tricky contour changes that must
be accounted for: ‘‘handles’’ and ‘‘slits’’. These are pictured in Figures 6.14 and 6.15.
While it is easy to see visually what must be done in these cases, the actual implementation
turned out to be fairly complicated.

5. Masks

It is important that an etching simulator be able to model masks. This doesn’t present a
fundamental algorithmical challenge, but some comments are in order.

Masks can be supported by introducing the appropriate special cases into the relevant
algorithms. First of all, there must be a way for the user to specify that a given face is
masked. A masked face will, of course, have an etch rate of zero. Given that masked faces
may be present, some statements can be made about how they behave. To analyze this, first
consider the behavior of edges.

Obviously, at an edge between two masked edges no virtual faces will form. At an
edge between a masked face an an unmasked one, there are three possible cases: The edge
can be concave, convex, or neither (an edge is neither concave nor convex if it is between two
faces that have equivalent normal vectors).

If the edge is convex, the edge develops as if there were an overhang (Figure 6.16). If
the edge is concave, all proceeds normally at the beginning, that is, the slower candidate edge
virtual faces tend to dominate. After a short time, an unmasked area directty adjacent to the
masked area will be exposed. This will eventually cause behavior such as that seen at a con-
vex edge. An edge that is neither concave nor convex will act like a concave edge. In all
cases an overhang will develop.

Chapter 6 Anisotropic Crystal Etching

Figure 6.14. This figure shows a ‘‘handle” that results when an edge that separated two
parallel edges disappears. The image on the left represents an object just before the ‘‘han-
dle’’ appears, and the image on the right shows the same object just as the critical edge

disappears.

Figure 6.15. This figure shows a *‘slit’” that results when a face disappears, but it still has
two finite-length edges. Again, the left image shows an object just before the “slit’” ap-
pears, and the right image shows the object just as the critical edges disappear.

Chapter 6 Anisotropic Crystal Etching

58

59

Figure 6.16. This figure illustrates the behavior of a convex edge between masked and un-
masked faces.

Figure 6.17. This figure illustrates the behavior of a concave edge between masked and un-
masked faces. Only etching at the vertex in question and the faces adjacent to it are shown.

The vertex virtual faces that form in the presence of masks will, of course, be different
than what happens in their absence. At any such vertex, two of the edges present will neces-
sarily be edges along the masked face. These edges will both be either concave, convex, or
neither. The correct behavior of the vertex with respect to vertex virtual faces can be
deduced in a straightforward way by assuming that an ‘‘overhang’’ such as that pictured in
Figure 6.17 is present.

Chapter 6 Anisotropic Crystal Etching

CHAPTER 7

3D ETCHING SIMULATOR IMPLEMENTATION

The algorithms presented in the previous chapter lead in a straightforward way to a pro-
cedural implementation of a program that simulates the etching process. Such a program has
been implemented in C using the UniGrafix graphics description language and the ug3 data
structures. [Séquin, '85] For the most part, the simulator consists of a simple, brute-force
implementation of the algorithms outlined in the previous chapter. In this chapter, we
describe in a general way the software interface and pick out some highlights of the imple-
mentation. Some general observations about the ug3 data structures are also presented, as
well as some observations about the difficulties inherant in the writing of applications such as
this.

1. Software Interfaces

The first software interface is that which is used to read shapes into and out of the etch-
ing program. These three-dimensional shapes are represented with ascii text files in the
UniGrafix language.

The etching simulator also lets one specify different etch rate functions. A description
of an etch rate function may be stored in an ascii text file. This file contains a representation
of the three basis vectors of the slowness shape. There is no requirement that these vectors be
orthogonal. Following this, slowness values at the 98 key directions should be supplied. As
a shortcut, the program allows one to specify only the first six slowness values. In this case,
the program applies symmetry transformations to obtain the other key directions (i.e. it takes
the (112) rate for the (11-2) direction). For details of the representation of an etch rate curve,
refer to Appendix 1.

The third software interface allows the user to set parameters such as how long the
given shape should be etched. These are controlled with command line arguments. Again,
for complete details refer to the man pages (see appendix 2).

The program can only produce ‘‘snapshots’’ of the etching process in UniGrafix files.
Using the ‘‘Animator’’ package being developed at U.C. Berkeley on a Silicon Graphics Iris
workstation one may also view the etching process in real time.

2. Implementation Highlights

2.1. Etch Rate Model

From the etch rate function that the user specifies, the program must produce an etch
rate for any arbitrary face orientation. The code that handles this is contained in the file
slowness.c. There is another basic operation that is supported by this code: the selection of a

60

61

set of candidate virtual faces, both at a vertex or along an edge of the object being etched.

A central problem in the supported operations is determining if a direction vector
penetrates a certain triangular facet of the tessellated unit sphere. To do so, it is sufficient to
solve a simple linear system of equations. Call the positions of the vertices of the facet 1,
¥,, and V3. Call the vector that we are testing dir . The following system of equations must
be solved:

avy+ bvy+cv3= dir

This system can be solved Zv,ith a single 3x3 matrix inversion. If the coefficients a, b and ¢
are all positive, the vector dir penetrates the given facet.

To calculate the slowness value at an arbitrary face orientation, the first step is to deter-
mine the slowness facet within which the normal vector of the face is contained. This is
accomplished by checking all slowness facets with the above relation, until the correct one is
found. As an optomization, the slowness facets are kept on an octree, and an inexpensive
extent calculation is used to reject facets. With the correct facet found, the following formula
yields the slowness value 5

P=d-abs (%—’—z)
‘A

where @ is a unit vector in the direction of the slowness value, P is a vector from the origin to
any point on the slowness facet, and 7 is the normal vector of the slowness facet.

To compute the set of candidate faces at a vertex, the convex subareas of the vertex
figure of interest are first determined as was described in Chapter 5 with a straightforward
algorithm. That analysis yields convex polygonal shapes. These shapes are triangulated to
reduce the problem to finding the key etching directions that lie within such triangular slow-
ness figures.

The final operation that needs to be supported is the finding of the set of candidate edge
virtual faces. The normal vectors of the two faces in the original shape that make up the
given edge are denoted by 2 and @’. The goal is to find all of the intersections of the great
circle segment between these two vectors with edges between slowness facets. Every such
edge is considered in turn. The vertices of these edges projected onto the unit sphere are
denoted by ¥, and V.

Eg)ch vector pair determines a great circle that lies in the plane of the two vectors. A
vector /" along the intersection of two such planes is computed. This vector is normalized to
proguce [". The two great circles intersect on the unit sphere at the points / and —/. The vec-
tor / can be found from:

T=@1X0)X 1 X7

If [is between &’y and 07, and it is also between V1 and ¥, then the two great circle segments
intersect at the point /. The same test can be applied to the vector —/. If neither test
succeeds, the two great circle segments do not intersect.

2.2. Finidng Vertex/Edge Virtual Faces

The code to find vertex and edge virtual faces is located in the files vvface.c and
evface.c, respectively. These modules were developed from the above algorithms in the
obvious way, with sets implemented as linked lists. Particular attention was paid to making

Chapter 7 Anisotropic Crystal Etching

62

the program robust in the face of floating point inaccuracies. For example, the algorithm
calls for the ‘‘first’’ intersection along an f-edge. In the actual implementation, the “‘first’’
intersection is actually a set of intersections, all within some value € of the intersection that
has the actual least value numerically.

2.3. Vertex Splitting

The code to split vertices is located in the file vsplit.c. This code is, also, largely a
straightforward implementation of the algorithms presented in the previous chapter.

One significant optimization was made in this module: The algorithm calls for substan-
tial re-calculation of intersection points. This is essentially the calculation of the intersection
of three planes. This is a somewhat expensive floating point operation (it involves a matrix
inversion, which is fairly expensive in the ug3 implementation). To avoid re-calculation, pre-
viously calculated values are stored on a hash table. To form a unique key, the addresses of
the three faces that are being intersected are used. These addresses are first sorted to put them
in a canonical order, and then their hex representation is concatenated to form a unique string
key. This simple optimization yields a significant performance improvement.

2.4. Contour Re-linking

The code that re-links contours once the vertices are split is located in the file
contours.c. One subtlety of this code is that contours must run either clockwise or counter-
clockwise, as appropriate. The etching simulator program does not care which way they run,
because it maintains its own normal vectors, but most programs that use the resulting
UniGrafix file(s) usually will insist on this being correct. The approach taken is to ensure that
one edge on every contour is found whose direction is known. Once this is found, the algo-
rithm automatically makes all of the other edges point the proper way.

Finding one edge with known direction is easy with a contour that is being re-linked
(i.e. for a face that was already present in the shape). It is somewhat more complicated for
virtual faces. In this case, a search is made for any known contour that shares an edge with
the virtual face. That edge must run in the opposite direction on the virtual face’s contour.

2.5. Feature Removal

The event that triggers the removal of a feature from a shape is that of an edge’s length
decreasing to zero. When this happens, the edge is removed from both faces in which it
occurs. When an edge is removed like this, further action might have to be taken: a face
might disappear, or a *‘slit’’ or a ‘‘handle’’ (described previously) might appear. Each of
these three possibilities must be explicitly checked for in any affected face.

A garbage-collection strategy was adopted to implement this. After any .edge is
removed, all faces in the object are checked for inconsistencies. First any face with two
edges or fewer is removed. The next step is to check for slits and handles, and make the
appropriate contour changes. Following this, any edge statements that are not referenced any-
where are removed (this is not automatically handled by the UniGrafix library). Next, all

Chapter 7 Anisotropic Crystal Etching

63

unreferenced vertices are removed. Finally, any vertices at which the local geometry has
changed are re-examined for virtual faces.

3. The ug3 Data Structures

The ug3 data structures provided the framework around which the program was written.
Unfortunately, the ug3 data structures are just that: data structures. They are not complete
enough to be considered an abstract data type, because there are not enough high-level primi-
tives supported. In addition, maintaining consistency of the data structures was a significant
problem. Several of the specific limitations of ug3 are discussed in some detail in comment
statements in the code, particularly at the beginning of the file main.c.

The only real general conclusion that I can draw from my experience with the ug3 data
structures is that it is, in general, difficult to represent three-dimensional objects in a com-
puter. Any attempt to create an abstract data type to represent such objects requires careful
consideration and design, and involves a number of engineering trade-offs. In my opinion,
important judgement criteria are speed, memory efficiency, avoidance of redundant informa-
tion, and degree to which the implementation enforces type consistency.

I'd like to say a few words about the last point, because I think that this criterion is too
often neglected in the design of data structures. ug3 was build around variant structures in
standard (non-ansi) C. As supplied, ug3 enforces almost no type checking whatsoever. For
example, every contour has a list of edges associated with it. This edge list is actually a
linked list of pointers to ‘‘UniGrafix statements’’, which may be contours, edges, vertices,
colors, etc. There is nothing that requires that the members of an edge list actually be edges!
This is obviously undesirable. I took some steps to compensate for this lack in the ug3
implementation: For one thing, I wrote my program in ansi C, and I wrote routine prototypes
for all of the ug3 library routines I called. This saved a tremendous amount of debugging
time. Additionally, I wrote my own access routines for the ug3 data structures, and I added
dynamic type checking wherever possible. This caught several errors for me, but this
approach is not good software design (it attacks the problem at the wrong level of abstraction,
and it’s slow, too!). In my opinion, it would have been eminently preferable had the ug3 data
structures and the ug3 library been designed with the idea of enforcing type consistency from
the beginning.

Chapter 7 Anisotropic Crystal Etching

CHAPTER 8

3D ETCHING SIMULATOR RESULTS

The results of etching various shapes is presented in the following pages. These shapes
were etched with the etching simulator, and rendered with either the ‘‘ugplot™ or ‘‘ugdisp’’
renderer.

The first series of images (Figure 8.1) shows the results of etching a cube shape that has
faces perpendicular to the coordinate axes. Initially the cube obtains 48 virtual faces. Each
edge has two virtual faces from the fast-etching (2,1,0) family. Each vertex has three virtual
faces, all from the (2,2,1) family (the fastest orientation in the etch rate function).

The following example (Figure 8.2) shows a saddle vertex of the type studied in detail
in Chapter 6. The top vertex is a ‘‘mostly convex’’ saddle vertex, that is, one in which all of
the edges fit into one half-space, a half-space that also contains the bulk of the object. The
bottom saddle vertex is neither ‘‘mostly convex’’ nor ‘‘mostly concave’’.

Next are several more complicated shapes. (Figures 8.3 through 8.6). These examples
show many interesting and complicated structures. The next two examples (Figures 8.7 and
8.8) demonstrate the effects of etching a shape in which some faces are masked.

Figure 8.9 shows a shape that etches according to the process discussed in Chapter 6 in
the ‘‘Re-analysis of Features’’ section. To make the process more visable, a contrived slow-
ness diagram that is not similar to the model developed in Chapter 5 was used. This slowness
shape only has vertices at the (1,0,0) orientations (where the slowness is 4), and at the (1,1,0)
orientations (where the slowness is 1). The small facets etching up the shape are at the
(0,1,-1) orientation. To make the facets fast enough to produce the *‘ripple’’ effect, the slow-
ness value at this orientation was set to 0.1. This slowness function is not meant to be realis-
tic; it was produced specifically to make the ‘‘ripple’’ effect as visable as possible.

Finally, there is an example of an object with a large number of concave vertices. An
easy way to generate such an object is to turn a convex polygon ‘‘inside-out’’ by making the
face normals point into the object. This has been done in Figure 8.10. The starting shape
was a regular octahedron. For this figure, a slightly different etch rate function was used. The
same key face slowness values were used, but the following basis vectors were used:

1_7, =<1.0,0.0, 0.0>
fx =<0.2,1.0,0.0>
I =<0.0,0.1,1.0>

After etching for sufficient time, this shape becomes a skewed cube with only (1,0,0)-type
faces.

65

time 1

time 3 time 5 time 6

Figure 8.1. These pictures show the results of etching a cube with faces normal to the coor-
dinate axes.

Chapter 8 Anisotropic Crystal Etching

time 1
+ime O

time 2
time 3

Figure 8.2. These pictures show the results of etching a shape with two saddle vertices.

Chapter 8 Anisotropic Crystal Etching

67

time 0 time 1

Figure 8.3. These pictures show the results of etching a somewhat complicated shape. The
original object contains only (1,0,0) type faces.

Chapter 8 Anisotropic Crystal Etching

Figure 8.4. These pictures show four views of the result of etching the same shape as in Fig-
ure 8.3 rotated with respect to the etch rate function so that the original faces in the object
etch relatively quickly. This causes interesting formations at the concave vertices. These
pictures were not drawn to scale.

Chapter 8 Anisotropic Crystal Etching

68

69

time 1
£ime0

time 2

time 3

Figure 8.5. These pictures show the results of etching a Szilassi minimal torus.

Chapter 8 Anisotropic Crystal Etching

Figure 8.6. These pictures show the results of etching a Csaszar minimal torus. The picture
in the upper left hand corer is the original torus, and the other pictures show three different

views of the results of etching this shape for a short time. These pictures were not drawn to
scale.

Chapter 8 Anisotropic Crystal Etching

70

time0l time 1

time 3

time 2

Figure 8.7. These pictures show the results of etching a shape that has some faces masked.
The masked faces are the two top faces, and the two vertical faces on the inside of the ““U’’.
To make the ledge more visible, this shape was etched with an etching function that had a
smaller differential between the slowest and fastest rates. The etching rates used were
5001=4.0,5011=2.0,511,1=15,5012=13,5111=12ands122=1.0.

Chapter 8 Anisotropic Crystal Etching

71

Figure 8.8. These pictures show four views of the results of etching the ‘“U’’ shape of Fig-
ure 8.9 rotated so that the original faces are in directions that etch more quickly. The normal
etch rate function was used for these pictures. These pictures were not drawn to scale.

Chapter 8 Anisotropic Crystal Etching

72

Figure 8.9. These pictures show the result of etching a shape such as that discussed in the
‘‘Re-analysis of Features'” section of Chapter 6 (see Figure 6.13). The top left picture is the
original shape, and the top right picture is the result after etching it for a short time. The pic-
ture on the bottom is the slowness shape that was used.

Chapter 8 Anisotropic Crystal Etching

73

74

time 2

time 8

time 40

Figure 8.10. These pictures show the results of etching a regular octahedron that has been
turned “‘inside-out’’ so that the normal vectors point into the object. The etching simulator
treats this like a figure with all concave edges that slowly grows as it is *‘etched’’. The etch-
ing function used for these pictures was non-orthogonal, which causes the exira triangular
faces visable at times.

Chapter 8 Anisotropic Crystal Etching

CHAPTER 9

SUMMARY

In this project, we began by making a model of the etching behavior of a simple 2D
solid. From this model, we were able to obtain some plausible values for etch rates, but more
importantly, we gained an intuitive insight into the shapes that plausible and self-consistent
etching functions might assume. We concluded that such functions can be approximated by a
set of slowness values at key etching directions (the (1,0), (1,1), and (2,1) families) which are
connected by straight lines. Using our etching model, we also built a 2D simulator that pro-
duced shapes that agree closely with the expected results. [Séquin, "89]

Building on our experiences in 2D, we did a less detailed analysis in 3D with the sole
aim of producing plausible and self-consistent etch rates at the key 3D etching directions (the
(1,0,0), (1,1,0), (2,1,0), (1,1,1), (2,1,1) and (2,2,1) families). Based on the intuition gained in
2D, we assumed that an etch rate function could be closely approximated by a slowness shape
that consists of triangular facets between the key etching directions.

Using this model of etching, we built a first prototype of a 3D etching simulator. Due
to time constraints, this simulator does not handle non-local contour changes (as when a hole
gets etched through a solid). Still, this simulator provided us with a testbed for our etching
model. The results were positive: We saw the kinds of results that we expected to see based
on the shapes that appear in the literature describing actual etching experiments on silicon.

To our etching simulator, we added the ability to mask off certain portions of a solid
from the ‘‘etchant’’. This was done in the hope that our etching simulator could be used as a
simulation tool by those who are exploring micro-fabrication.

Acknowledgements

Many thanks to Carlo Séquin, my advisor, for his ideas and encouragement, and for
putting up with the many obstacles we faced. I also thank Kevin Smith, for his help in unrav-
eling the ug3 data structures, and Tien Truong for his convex hull module. I'd also like to
thank the Free Software Foundation, for making available their excellent ‘‘gcc’’ compiler and
“‘gdb’’ debugger, without which the debugging process would have been much more gruel-
ling.

75

BIBLIOGRAPHY

H. Seidel and L. Csepregi, ‘‘Studies on the Anisotropy and Selectivity of Etchants Used
for the Fabrication of Stress-free Structures,”” 1982 Spring Meeting, Electrochemical
Society, Montreal, Canada, Abstract No. 123, (1982).

F. C. Frank, ‘‘Growth and Perfection of Crystals’® (John Wiley and Sons, New York,
1958) p. 411.

D. J. Barber, F. C. Frank et al, ‘‘Prediction of ion-bombarded surface topographies
using Frank’s kinematic theory of crystal dissolution’’, J. Mater. Sci. 8 (1973) 1030.

C. H. Séquin, ‘‘Microfabrication on the Macintosh,”” Proc. of the 5th USENIX
Workshop on Computer Graphics, Monterey. CA, Nov. 1989, p. 1-15.

C. H. Séquin, ‘* The Berkeley UNIGRAFIX Tools, Version 2.5’", CS Division Report
No. UCB/CSD 86/281, University of California, Berkeley, CA, 1985

76

Appendix 1

Manual Pages

ETCH(UG) UNKNOWN SECTION OF THE MANUAL ETCH(UG)

NAME

etch — simulates anisotropic etching

SYNOPSIS

etch [options]

DESCRIPTION

etch is a program that reads a shape described by a UniGrafix file, and subjects that shape to anisotropic
etching. One may use the default etch rate function (see MS Report by Bill Foote), or specify a different
one. The etch rate function may be specified by a series of slowness values at ‘‘key’’ faces, or it may be
specfied by a UniGrafix file that describes a slowness surface. The program can output a series of
UniGrafix files at different times, or it can be used on an Iris workstation to produce an animation of the
etching process.

A mask over any face may be specified by giving that face a color called ‘‘masked’. If the shape’s
UniGrafix file has colors called “‘color_001"", *‘color_011"", “‘color_012"’, “‘color_111"’, *‘color_112"",
“color_122” and “‘color_evface’’ then virtual faces will be colored apropriately (edge virtual faces that
don’t happen to be at key etch rates will be colored *‘color_evface’).

The available options are:

—slowness <file>
Tells the program to read a series of slowness values at *‘key’’ faces from file. Call the program
with “‘—slowness_help’’ for a description of the format of this file.

—slowness_help
Tells the program to output a help message that describes the format of an etch rate function for
the ‘‘—slowness’’ option.

—slowness_print
Tells the program to produce a UniGrafix description of the slowness shape on stdout.

—slowness_log
The same as ‘‘—slowness_print’’, except every vertex is scaled such that its length is the logarithm
of its slowness value.

—slowness_unit
The same as ‘‘—slowness_print’’, except that every vertex is normalized. This produces the pro-
jection of the key etch rates onto the unit sphere with the appropriate triangular facets.

—slowness_uni <file>
Tells the program to read the slowness shape from the UniGrafix file file. It is assumed that this
shape is composed entirely of triangular facets, and that it describes a valid function in 3D. Such
a surface must be a single-valued shell (in polar coordinates) surrounding the origin.

—i <file> Default: stdin
Specifies the initial shape to be etched.

—m <number>
Including the “‘~m’’ option will cause ‘‘snapshots’” of the etching process to be output. If the
““_p’* option is not specified, output will go to the files *‘out.000”’, **out.001"’, etc. One file will
be created every number units of simulated time.

-p Used in conjunctibn with the ““—m’’ option, tells the program to output each frame to the file
“‘out’’, and wait for a keystroke after each file is output.

—limit <number>
Tells the program to terminate once it has produced limit snapshots (see the ““~m’” option).

—f <number>
Tells the program to terminate when the simulated etching time reaches number. If the “—m

LX)

Sun Release 3.4 Last change: 1990-5-10 1

‘;

ETCH(UG) UNKNOWN SECTION OF THE MANUAL ETCH(UG)

FILES

option was not specified the shape (after etching) will be output to stdout.

~reexamine_len <number> Default: infinity (i.e. no edge re-examination)
Tells the program to examine an edge that is added at a virtual face to see if it splits once its length
becomes number.

—vface_tolerence <number> Default: 1 degree
Tells the program to not add a virtual face if its normal is within number degrees of any face in its
neighborhood.

—no_virtual
Tells the program to not add any virtual faces.

—d Produces debugging information on stdout.

—file <file>
Causes options to be read from file instead of from the command line.

“ug/bin/etch

SEE ALSO

BUGS

2detch(UG)

Non-local contour changes are not detected.

AUTHOR

Bill Foote

Sun Release 3.4 Last change: 1990-5-10 2

‘.

2DETCH(UG) UNKNOWN SECTION OF THE MANUAL 2DETCH (UG)

NAME

2detch - simulate the etching of a 2 dimensional polygonal figure.

SYNOPSIS

2detch etchmodel [options] < startshape > finalshape

DESCRIPTION

2detch is a program which reads an etching model (such as is produced by 2detch_faces) and an intial
shape, and calculates what that shape will look like after etching for the specified time. The starting and
final shapes are in UniGrafix format. The format of an etch model is described in 2detch_faces(UG). In
addition to generating the final shape in UniGrafix format, 2detch will display intermediate shapes on a
graphics screen.

The available options are:

—f <number> Default: f=1
This sets the finish time for etching. The final UniGrafix file will be the result of etching the initial
shape until the finish time.

-m <number> Default: m=0
This sets the time step between subsequent frames for a ‘‘movie’’. For each ‘‘frame’’ a UniGrafix
~file is generated, with file names in the sequence ‘‘etch.000°’, “‘etch.001", etc.

—~s <number> Default: s=0
This sets the time step between subsequent frames for the graphic display. If this value is O (the
default), no graphics display will be generated.

—u <file_name> Default: stdin
Specifies the UniGrafix file of the original shape.

-p If -p is present, etch will pause between screens (until return is pressed). Entering "?" will give a
list of options that can be entered at this point. One of the options allows you to generate a
UniGrafix file of an intermediate shape.

—file <file_name> Default: none
Directs the program to take all command line arguments from the file file_name rather than from
the command line. If this argument is present it must be the only argument on the actual com-
mand line.

—d Turns on debug mode and prints information about program execution to stderr. In addition,
some extra information about the final shape is included as a comment in the output file.

IMPLEMENTATION

After reading in the starting shape, 2detch adds all “‘important’” edges at each comer, first checking that
the resulting edge will indeed grow. Following this, it calculates an edge velocity for each edge, then a
vertex velocity for each vertex. Each edge is assigned a ‘‘time to live’’, that is, the amount of time until
that edge is etched away to nothing. Similarly, vertices are assigned a ‘‘time to collide’’, that is, the
amount of time until they collide with an edge. At each timestep, vertices are moved the appropriate
amount, and contour changes are checked for. If a contour change happens (i.e. an edge disappears) some
of the surrounding velocities and time factors are re-calculated.

EXAMPLE

cat rate_parameters | 2detch_rate | 2detch_faces > etchmodel
2detch etchmodel -f 10 -s .1 < startshape > finalshape

SEE ALSO

2detch_rate(UG), 2detch_faces(UG)

Sun Release 3.4 Last change: 1990-3-04 . 1

‘,

2DETCH(UG) UNKNOWN SECTION OF THE MANUAL 2DETCH (UG)

AUTHOR
Bill Foote

Sun Release 3.4 Last change: 1990-3-04 ' 2

‘;

2DETCH_RATE (UG) UNKNOWN SECTION OF THE MANUAL 2DETCH_RATE (UG)

NAME

2detch_rate — generate etch rate curve

SYNOPSIS

2detch_rate [options] < parameters > ratecurve

DESCRIPTION

2detch_rate is a program which reads the characteristic etching parameters of a 2D crystal, and generates
the etch rate curve. It is expected that the eleven parameters (1h, lvx, lvy, ah, bh, ch, dh, av, bv, cv and dv)
will be present in order in the file ‘‘parameters’’. The etch rate curve is output in polar coordinates as a
sequence of (r,theta) points, one pair per line, followed by a short comment (surrounded by {}) indicating
the original parameters. It is expected that this output will be used by a program that performs linear inter-
polation in polar coordinates between two adjacent points. All angles are measured in radians.

The available options are:

—n <number> Default: n=4
This sets the number of points on the etch rate curve to specify between minima and maxima.
This influences how accurately the etch rate curve is approximated. Setting this value too high
could result in slower execution of programs that use this curve.

—r <number> Default: r=0.0
This is an angle in radians that specifies the ‘‘curve rotation factor’’, i.e. how much the shape is
rotated around the origin. The lattice size vectors lh and lv are constrained to have positive com-
ponents, so this parameter allows one to represent a crystal with an arbitrary orientation.

—d Turns on debug mode and prints information about program execution to stderr.

IMPLEMENTATION

This program works by first determining the orientations of the sixteen ‘‘key”’ rates ((1,0), (2,1), (1,1),
(1,2), (O,1), (-1, 2), etc.). It then evenly divides the regions between successive pairs of ‘‘key’’ rates, and
adds new orientatons to the list. Following this, it calculates the etch rate at each orientation from the lat-
tice parameters. Finally, it sorts the list of orientations, and outputs it in polar form.

EXAMPLE

cat rate_parameters | 2detch_rate | 2detch_faces > etchmodel
2detch_etch etchmodel -f 10 -s .1 < startshape > finalshape

SEE ALSO
2detch_faces(UG), 2detch_etch(UG), 2detch_rate_to_ug(UG)
AUTHOR
Bill Foote
Sun Release 3.4 Last change: 1990-3-04 1

‘;

2DETCH_FACES (UG) UNKNOWN SECTION OF THE MANUAL 2DETCH_FACES (UG)

NAME

2detch_faces — determine ‘‘important’’ faces for an etch rate curve

SYNOPSIS

2detch_faces [options] < ratecurve > etchmodel

DESCRIPTION

2detch_faces is a program which reads an etch rate curve (such as is produced by 2detch_rate) and deter-
mines the ‘‘important’’ faces implied by that curve. The important faces are those that will become visible
after etching at a corner for sufficient time. An example of an important face is the <2,1> edge.

2detch_faces expects the input to be a series of (r,theta) points, one pair per line, optionally followed by a
comment. The only requirement is that the comment commence with a non-numeric character. Output
consists of these elements: the original etch rate curve, the word *‘concave’’, numbers indicating the orien-
tations of important edges at a concave corner, the word ‘‘convex”’, numbers indicating the orientations of
important edges at a convex corner, and the comment taken from the input. All angles are measured in
radians. An etch rate curve is defined to be the linear interpolation (in polar coordinates) between adjacent
points specified in the input.

The available options are:
—i <number> Default: i=.01

This sets the minimum time rate of change of an edge for it to be considered important. This
applies to concave-corner edges as well as to convex-corner edges.

—-a <number> Default: a=0.0
This sets the minimum angle between two non-minimal important edges at a concave corner. Set-
ting this parameter imposes another constraint on the number of important edges at a concave

corner.
—d Turns on debug mode and prints information about program execution to stderr.
IMPLEMENTATION

For any etch rate curve, the edges corresponding to local maxima are always important for convex corers.
Some other edges may be important ~ this is a function of the second derivative (with respect to theta) of
the etch rate function. For concave comers, all edges corresponding to local minima are important, but
some other faces may be important, too.

2detch_faces first determines the local minima and local maxima of the etch rate curve. It then subdivides
the region between a local maximum and the nearest local minimum until the time rate of change of the
length of an edge is less than the minimum. This works for both concave and convex corners.

NOTE: For most etch rate curves, the only important faces are those that correspond to the local minima
and maxima of the etch rate curve.

EXAMPLE

cat rate_parameters | 2detch_rate | 2detch_faces > etchmodel
2detch_etch etchmodel -f 10 -s .1 < startshape > finalshape

SEE ALSO

2detch_rate(UG), 2detch_(UG)

AUTHOR

Bill Foote

Sun Release 3.4 Last change: 1989-4-19 1

",

2DETCH_RATE_TO_UG (UG) UNKNOWN SECTION OF THE MANUAL 2DETCH_RATE_TO_UG (UG)

NAME

2detch_rate_to_ug — transform polar rate curve into unigrafix
SYNOPSIS

2detch_rate_to_ug [options] < etchmodel
DESCRIPTION

2detch_rate_to_ug is a program which reads an etching model (such as is produced by 2detch_faces) and
produces a straight-line approximation of the curve in unigrafix format. This allows one to plot the rate
curve using ugplot.

The available options are:

-n <number> Default: n=8
This sets the number of lines with which to approximate each polar segment. Since the rate curve
is interpolated in polar coordinates, it is really a curved shape between two points on the curve.
This parameter sets how many straight lines are used to approximate this curve.

-d Turns on debug mode and prints information about program execution to stderr.

EXAMPLE
cat rate_parameters | 2detch_rate | 2detch_rate_to_ug | ugplot -dp

SEE ALSO
2detch_rate(UG)

AUTHOR
Bill Foote

Sun Release 3.4 Last change: 1990-9-12 1

‘;

Appendix 2

Description of 3D etch rate file format

RATE FILE HELP

The etch slowness curve is specified by three basis vectors, followed by

a number of slowness values at key etching directions. The basis vectors
determine the crystal axes. They are called 1(x), 1l(y) and 1(z), and are
input in cartesian coordinates (x, y, then z). The file should begin with
9 numbers, for 1(x), 1l(y) and 1l(z) (in that order). The program normalizes
these vectors to unit length.

Following this, there should be a number of slowness values at key etching
directions. A direction is specified by a vector in the direction of the
face normal (pointing outwards). In the notation below, (012) is a face
who’s normal is in the direction of 0*1(x) + 1*1l(y) + 2*1(z).

There are a total of 98 key etch rate directions. An etch slowness file can
have slowness values for all 98 key etch rate directions. If desired,

the file can contain slowness values for only the first six key etch rate
directions (i.e. the first line below). If this is done, the program will
assume that the etch slowness curve is completely symmetrical (i.e. the (012)
etching slowness is the same as (021), (102), (201), (210), and (120).).

The program expects the slowness values in the following order:

(00 1) (0 11) (111 (01 2) (11 2) (12 2)
(01 0) ({ 0 21) (1 21)
(101 (10 2) (21 2)
(110 (12 0) 2 2 1)
(10 0) (210) (21 1)
(201)
(0 0-1) (0 1-1) (1 1-1) (0 1-2) (1 1-2) (1 2-2)
(0-1 0) (0-1 1) (1-1 1) { 0-2 1) (1-2 1) (1-2 2)
(1 0-1) (1 0-2) (2 1-2)
(1-1 0) (1-2 0) (2-2 1)
(-1 0 0) (-1 1 0) (-1 11) (-2 1 0) (-2 1 1) (-2 2 1)
(-1 0 1) (-2 0 1) (-2 1 2)
(0-1 2) { 1-1 2)
(0 2-1) (1 2-1)
(-1 0 2) (-1 1 2)
(-1 2 0) (-1 2 1)
(2-1 Q) (2-1 1)
(2 0-1) (2 1-1)
(0-1-1) (1-1-1) (0-1-2) (1-1-2) (1-2-2)
(0-2-1) (1-2-1)
(-1 0-1) (-1 1-1) (-1 0-2) (-1 1-2) (-2 1-2)
(-1-1 0) (-1-1 1) (-1-2 0) (-1-2 1) (-2-2 1)
(-2-1 0) (-2-1 1)
(-2 0-1) (-2 1-1)
(-1 2 2)
(2-1 2)
(2 2-1)

(-2-1 2)

(-1-1 2)
(-1 2-1)
(2-1-1)
(-1-1-1) (-1-1-2) (-1-2-2)
(-1-2-1)
(-2-1-2)
(-2-2-1)
(-2-1-1)

The program reads each octant of the etch rate curve. Each octant
is divided up into 6 sections, each of which contain slowness points
from the key etching directions. Along section boundaries adjacent
sections share key etching directions -- if the program has already
read the slowness for a given key etching direction, it uses the
value it has already read. This is why there are gaps in the above
list of key etch directions.

